Review
BibTex RIS Cite

HESPERİDİNİN EGZERSİZ PERFORMANSI ÜZERİNE ETKİSİ: GÜNCEL BİR DERLEME

Year 2025, Volume: 6 Issue: 3, 132 - 145, 22.12.2025

Abstract

Bu çalışma, doğal bir flavonoid olan hesperidinin egzersiz performansı, toparlanma süreçleri ve kas sağlığı üzerindeki potansiyel etkilerini mevcut bilimsel veriler ışığında değerlendirmeyi amaçlamaktadır. Hesperidinin; oksidatif stres önleyici, iltihap baskılayıcı, vazodilatatif ve metabolik düzenleyici özellikleri sayesinde fiziksel performansı destekleyebileceği düşünülmektedir. Sekiz haftalık 500 mg/gün 2S-hesperidin takviyesi, amatör bisikletçilerde fonksiyonel eşiğin yaklaşık %3,2, maksimum gücün %2,7 oranında artmasına ve Wingate testinde ortalama gücün %4’e kadar yükselmesine katkı sağlamıştır. Ayrıca egzersiz sonrası laktat konsantrasyonu %8–12 oranında daha düşük, bikarbonat ve baz fazlalığı %5–10 düzeyinde daha yüksek, kas kütlesinde %1–2 artış ve yağ oranında %1,5–2 azalma rapor edilmiştir. Antioksidan kapasitede anlamlı iyileşmeler gözlenmiş; örneğin süperoksit dismutaz aktivitesi %15–20 artarken, inflamatuvar belirteçlerden MCP-1 ve GSSG seviyeleri %10–15 oranında azalmıştır. Hesperidinin nitrik oksit biyoyararlanımını artırarak vazodilatasyonu desteklediği ve böylece aerobik kapasite ile kas oksijenlenmesini koruduğu; ayrıca mitokondriyal fonksiyonları geliştirerek yağ oksidasyonu ve enerji üretimini optimize ettiği bildirilmektedir. Ancak düşük biyoyararlanım (özellikle geleneksel formlarda %20’nin altında emilim), formülasyon farklılıkları ve bireyler arası fizyolojik yanıt değişkenliği, bu etkilerin uygulamada sınırlı kalmasına yol açabilmektedir. Mevcut literatürdeki çalışmaların çoğu kısa süreli (≤8 hafta) ve küçük örneklemli (çoğunlukla n=30–40) olup, bu bulguların genellenebilirliğini kısıtlamaktadır. Bu nedenle, ≥12 hafta süreli, çok merkezli, >100 katılımcılı randomize kontrollü çalışmalar ve farklı spor branşlarında yapılacak ileri araştırmalar, hesperidinin spora özgü performans ve toparlanma süreçlerindeki etkinliğini daha net ortaya koyacaktır.

References

  • Adefegha, S. A., Saccol, R. d. S. P., Jantsch, M. H., da Silveira, K. L., & Leal, D. B. R. (2021). Hesperidin mitigates inflammation and modulates ectoenzymes activity and some cellular processes in complete Freund’s adjuvant-induced arthritic rats. Journal of Pharmacy Pharmacology, 73(11), 1547-1561.
  • Ahmad, A., Afzaal, M., Saeed, F., Ali, S. W., Imran, A., Zaidi, S. Y. R., Saleem, M. A., Hussain, M., & Al Jbawi, E. (2023). A comprehensive review of the therapeutic potential of citrus bioflavonoid hesperidin against lifestyle-related disorders. Cogent Food Agriculture, 9(1), 2226427.
  • Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M., & Al-Mssallem, M. Q. (2022). Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 27(9), 2901.
  • Alamoudi, J. A., El-Masry, T. A., El-Nagar, M. M., El Zahaby, E. I., Elmorshedy, K. E., Gaballa, M. M., Alshawwa, S. Z., Alsunbul, M., Alharthi, S., & Ibrahim, H. A. (2024). Chitosan/hesperidin nanoparticles formulation: a promising approach against ethanol-induced gastric ulcers via Sirt1/FOXO1/PGC-1α/HO-1 pathway. Frontiers in Pharmacology, 15, 1433793.
  • Alessandrello, C., Gammeri, L., Sanfilippo, S., Cordiano, R., Brunetto, S., Casciaro, M., & Gangemi, S. (2021). A spotlight on lime: a review about adverse reactions and clinical manifestations due to Citrus aurantiifolia. Clinical Molecular Allergy, 19, 1-10.
  • Antunes, M. S., Jesse, C. R., Ruff, J. R., de Oliveira Espinosa, D., Gomes, N. S., Altvater, E. E. T., Donato, F., Giacomeli, R., & Boeira, S. P. (2016). Hesperidin reverses cognitive and depressive disturbances induced by olfactory bulbectomy in mice by modulating hippocampal neurotrophins and cytokine levels and acetylcholinesterase activity. European Journal of Pharmacology, 789, 411-420.
  • Bansal, K., Bhati, H., & Bajpai, M. (2024). New insights into therapeutic applications and nanoformulation approaches of hesperidin: an updated review. Pharmacological research-modern Chinese medicine, 10, 100363.
  • Bartolomei, S., Sadres, E., Church, D. D., Arroyo, E., Iii, J. A. G., Varanoske, A. N., Wang, R., Beyer, K. S., Oliveira, L. P., & Stout, J. R. (2017). Comparison of the recovery response from high-intensity and high-volume resistance exercise in trained men. European Journal of Applied Physiology, 117, 1287-1298.
  • Bassett Jr, D. R., & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine Science in Sports Exercise, 32(1), 70.
  • Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., & Freeman, B. A. (1990). Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences, 87(4), 1620-1624.
  • Bussmann, A. J., Zaninelli, T. H., Saraiva-Santos, T., Fattori, V., Guazelli, C. F., Bertozzi, M. M., Andrade, K. C., Ferraz, C. R., Camilios-Neto, D., & Casella, A. M. (2022). The flavonoid hesperidin methyl chalcone targets cytokines and oxidative stress to reduce diclofenac-induced acute renal injury: Contribution of the Nrf2 redox-sensitive pathway. Antioxidants, 11(7), 1261.
  • Buzdağlı, Y., Eyipınar, C. D., Kacı, F. N., & Tekin, A. (2023). Effects of hesperidin on anti-inflammatory and antioxidant response in healthy people: a meta-analysis and meta-regression. International Journal of Environmental Health Research, 33(12), 1390-1405.
  • Chen, M., Gu, H., Ye, Y., Lin, B., Sun, L., Deng, W., Zhang, J., & Liu, J. (2010). Protective effects of hesperidin against oxidative stress of tert-butyl hydroperoxide in human hepatocytes. Food Chemical Toxicology, 48(10), 2980-2987.
  • Cheraghpour, M., Imani, H., Ommi, S., Alavian, S. M., Karimi‐Shahrbabak, E., Hedayati, M., Yari, Z., & Hekmatdoost, A. (2019). Hesperidin improves hepatic steatosis, hepatic enzymes, and metabolic and inflammatory parameters in patients with nonalcoholic fatty liver disease: A randomized, placebo‐controlled, double‐blind clinical trial. European journal of nutrition, 33(8), 2118-2125.
  • Choi, Y. H. (2025). Hesperidin protects C2C12 myoblasts from oxidative damage by reducing ROS-mediated mitochondrial damage and endoplasmic reticulum stress. Molecular Cellular Toxicology, 21(1), 251-261. Crescenti, A., Caimari, A., Alcaide-Hidalgo, J. M., Mariné-Casadó, R., Valls, R. M., Companys, J., Salamanca, P.,
  • Calderón-Pérez, L., Pla-Pagà, L., & Pedret, A. (2022). Hesperidin bioavailability is increased by the presence of 2S-diastereoisomer and micronization—a randomized, crossover and double-blind clinical trial. Nutrients, 14(12), 2481.
  • Dalle, S., Rossmeislova, L., & Koppo, K. (2017). The role of inflammation in age-related sarcopenia. Frontiers in physiology, 8, 1045.
  • De Oliveira, D. M., Dourado, G. K. Z. S., & Cesar, T. B. (2013). Hesperidin associated with continuous and interval swimming improved biochemical and oxidative biomarkers in rats. Journal of the International Society of Sports Nutrition, 10, 1-7.
  • Di Meo, S., Napolitano, G., & Venditti, P. (2019). Mediators of physical activity protection against ROS-linked skeletal muscle damage. International journal of molecular sciences, 20(12), 3024.
  • Dobiaš, L., Petrová, M., Vojtko, R., & Kristová, V. (2016). Long‐term treatment with hesperidin improves endothelium‐dependent vasodilation in femoral artery of spontaneously hypertensive rats: The involvement of NO‐synthase and Kv channels. Phytotherapy research, 30(10), 1665-1671.
  • Ekinci Akdemir, F. N., Gülçin, İ., Karagöz, B., Soslu, R., & Alwasel, S. H. (2016). A comparative study on the antioxidant effects of hesperidin and ellagic acid against skeletal muscle ischemia/reperfusion injury. Journal of enzyme inhibition medicinal chemistry, 31(sup4), 114-118.
  • Estruel-Amades, S., Massot-Cladera, M., Garcia-Cerdà, P., Pérez-Cano, F. J., Franch, À., Castell, M., & Camps-Bossacoma, M. (2019). Protective effect of hesperidin on the oxidative stress induced by an exhausting exercise in intensively trained rats. Nutrients, 11(4), 783.
  • Estruel-Amades, S., Massot-Cladera, M., Pérez-Cano, F. J., Franch, À., Castell, M., & Camps-Bossacoma, M. (2019). Hesperidin effects on gut microbiota and gut-associated lymphoid tissue in healthy rats. Nutrients, 11(2), 324.
  • Ganeshpurkar, A., & Saluja, A. (2019). The pharmacological potential of hesperidin. Guo, X., Li, K., Guo, A., & Li, E. (2020). Intestinal absorption and distribution of naringin, hesperidin, and their metabolites in mice. Journal of Functional Foods, 74, 104158.
  • Haghmorad, D., Mahmoudi, M. B., Salehipour, Z., Jalayer, Z., Rastin, M., Kokhaei, P., & Mahmoudi, M. (2017). Hesperidin ameliorates immunological outcome and reduces neuroinflammation in the mouse model of multiple sclerosis. Journal of neuroimmunology, 302, 23-33.
  • Hajialyani, M., Hosein Farzaei, M., Echeverría, J., Nabavi, S. M., Uriarte, E., & Sobarzo-Sánchez, E. (2019). Hesperidin as a neuroprotective agent: a review of animal and clinical evidence. Molecules, 24(3), 648.
  • Hegazy, W., Abdul-Hamid, M., Abdel-Rehiem, E. S., Abdel-Moneim, A., & Salah, M. (2023). The protective impact of hesperidin against carbimazole-induced hypothyroidism, via enhancement of inflammatory cytokines, histopathological alterations, and Nrf2/HO-1. Environmental Science Pollution Research, 30(18), 53589-53604.
  • Homayouni, F., Haidari, F., Hedayati, M., Zakerkish, M., & Ahmadi, K. (2018). Blood pressure lowering and anti‐inflammatory effects of hesperidin in type 2 diabetes; a randomized double‐blind controlled clinical trial. Phytotherapy research, 32(6), 1073-1079.
  • Imperatrice, M., Cuijpers, I., Troost, F. J., & Sthijns, M. M. (2022). Hesperidin functions as an ergogenic aid by increasing endothelial function and decreasing exercise-induced oxidative stress and inflammation, thereby contributing to improved exercise performance. Nutrients, 14(14), 2955.
  • Iskender, H., Dokumacioglu, E., Sen, T. M., Ince, I., Kanbay, Y., & Saral, S. (2017). The effect of hesperidin and quercetin on oxidative stress, NF-κB and SIRT1 levels in a STZ-induced experimental diabetes model. Biomedicine Pharmacotherapy, 90, 500-508.
  • Jamal, A., Brettle, H., Jamil, D. A., Tran, V., Diep, H., Bobik, A., van der Poel, C., Vinh, A., Drummond, G. R., & Thomas, C. J. (2024). Reduced Insulin Resistance and Oxidative Stress in a Mouse Model of Metabolic Syndrome following Twelve Weeks of Citrus Bioflavonoid Hesperidin Supplementation: A Dose–Response Study. Biomolecules, 14(6), 637.
  • Jarvis, K., Woodward, M., Debold, E. P., & Walcott, S. (2018). Acidosis affects muscle contraction by slowing the rates myosin attaches to and detaches from actin. Journal of muscle research cell motility, 39, 135-147.
  • Jia, Q., Li, L., Wang, X., Wang, Y., Jiang, K., Yang, K., Cong, J., Cai, G., & Ling, J. (2022). Hesperidin promotes gastric motility in rats with functional dyspepsia by regulating Drp1-mediated ICC mitophagy. Frontiers in Pharmacology, 13, 945624.
  • Jones, A. M., & Carter, H. (2000). The effect of endurance training on parameters of aerobic fitness. Sports medicine, 29, 373-386.
  • Joyner, M. J., & Casey, D. P. (2015). Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiological reviews.
  • Jung, U. J., & Kim, S. R. (2018). Beneficial effects of flavonoids against Parkinson's disease. Journal of medicinal food, 21(5), 421-432.
  • Kalita, B., & Patwary, B. N. (2020). Formulation and in vitro evaluation of hesperidin-phospholipid complex and its antioxidant potential. Current Drug Therapy, 15(1), 28-36.
  • Kapoor, M. P., Moriwaki, M., Uguri, K., Kito, K., Timm, D., & Abe, A. (2023). Improved bioavailability of hesperetin 7-O-glucoside inclusion complex with β-cyclodextrin in Sprague-Dawley rats and healthy humans. Journal of Functional Foods, 107, 105708.
  • Kazak, F., Yarım, G., Anadol, E., & Salt, A. (2024). Hesperidin alleviates inflammation in the metabolic syndrome model Hesperidin ublažava upalu kod modela štakora s metaboličkim sindromom. Veterinarski arhiv, 94(1).
  • Khalilabad, S. N., Mirzaei, A., Askari, V. R., Mirzaei, A., Khademi, R., & Rahimi, V. B. (2024). How hesperidin and Hesperetin, as promising food Supplements, combat cardiovascular Diseases: A systematic review from bench to bed. Journal of Functional Foods, 120, 106358.
  • Kodous, A. S., Abdel-Maksoud, M. A., El-Tayeb, M. A., Al-Sherif, D. A., Mohamed, S. S. A., Ghobashy, M. M., Emad, A. M., Abd El‐Halim, S. M., Hagras, S. A., & Mani, S. (2024). Hesperidin-loaded PVA/alginate hydrogel: targeting NFκB/iNOS/COX-2/TNF-α inflammatory signaling pathway. Frontiers in Immunology, 15, 1347420.
  • Kosari-Nasab, M., Shokouhi, G., Ghorbanihaghjo, A., Abbasi, M. M., & Salari, A.-A. (2018). Hesperidin attenuates depression-related symptoms in mice with mild traumatic brain injury. Life sciences, 213, 198-205.
  • Li, Y., Kandhare, A. D., Mukherjee, A. A., & Bodhankar, S. L. (2019). Acute and sub-chronic oral toxicity studies of hesperidin isolated from orange peel extract in Sprague Dawley rats. Regulatory Toxicology Pharmacology, 105, 77-85.
  • Liu, Y., Shen, X., Sha, M., Feng, Z., & Liu, Y. (2023). Natural bioactive flavonoids as promising agents in alleviating exercise-induced fatigue. Food Bioscience, 51, 102360.
  • Lorzadeh, E., Ramezani-Jolfaie, N., Mohammadi, M., Khoshbakht, Y., & Salehi-Abargouei, A. (2019). The effect of hesperidin supplementation on inflammatory markers in human adults: a systematic review and meta-analysis of randomized controlled clinical trials. Chemico-biological interactions, 307, 8-15.
  • Luque, M. Z., Aguiar, A. F., da Silva-Araújo, A. K., Zaninelli, T. H., Heintz, O. K., Saraiva-Santos, T., Bertozzi, M. M., Souza, N. A., Júnior, E. O., & Verri Jr, W. A. (2023). Evaluation of a preemptive intervention regimen with hesperidin methyl chalcone in delayed-onset muscle soreness in young adults: a randomized, double-blinded, and placebo-controlled trial study. European Journal of Applied Physiology, 123(9), 1949-1964.
  • Ma, R., You, H., Liu, H., Bao, J., & Zhang, M. (2024). Hesperidin: a citrus plant component, plays a role in the central nervous system. Heliyon, 10(21).
  • Magherini, F., Fiaschi, T., Marzocchini, R., Mannelli, M., Gamberi, T., Modesti, P. A., & Modesti, A. (2019). Oxidative stress in exercise training: The involvement of inflammation and peripheral signals. Free radical research, 53(11-12), 1155-1165.
  • Maneesai, P., Bunbupha, S., Potue, P., Berkban, T., Kukongviriyapan, U., Kukongviriyapan, V., Prachaney, P., & Pakdeechote, P. (2018). Hesperidin prevents nitric oxide deficiency-induced cardiovascular remodeling in rats via suppressing TGF-β1 and MMPs protein expression. Nutrients, 10(10), 1549.
  • Martinez-Noguera, F., Marin-Pagan, C., Carlos-Vivas, J., & Alcaraz, P. (2021). 8-week supplementation of 2S-hesperidin modulates antioxidant and inflammatory status after exercise until exhaustion in amateur cyclists. Antioxidants, 10(3).
  • Martínez-Noguera, F. J., Alcaraz, P. E., Carlos-Vivas, J., & Marín-Pagán, C. (2022). Chronic supplementation of 2S-hesperidin improves acid-base status and decreases lactate at FatMax, at ventilatory threshold 1 and 2 and after an incremental test in amateur cyclists. Biology, 11(5), 736.
  • Martínez-Noguera, F. J., Alcaraz, P. E., Carlos-Vivas, J., & Marín-Pagán, C. (2023). 8 weeks of 2 S-hesperidin prevents a decrease in p O 2 at submaximal intensity in amateur cyclists in off-season: randomized controlled trial. Food Function, 14(6), 2750-2767.
  • Martínez-Noguera, F. J., Marín-Pagán, C., Carlos-Vivas, J., & Alcaraz, P. E. (2020). Effects of 8 weeks of 2S-hesperidin supplementation on performance in amateur cyclists. Nutrients, 12(12), 3911.
  • Martínez-Noguera, F. J., Marín-Pagán, C., Carlos-Vivas, J., Rubio-Arias, J. A., & Alcaraz, P. E. (2019). Acute effects of hesperidin in oxidant/antioxidant state markers and performance in amateur cyclists. Nutrients, 11(8), 1898.
  • Martínez, A. P., Diaz, M. C., Romero, L. A., Redha, A. A., Zare, R., Hernandez, S. V., Prokopidis, K., & Clifford, T. (2024). Effects of Vaccinium berries (blueberries, cranberries and bilberries) on oxidative stress, inflammation, exercise performance, and recovery–a systematic review. Food Function, 15(2), 444-459.
  • Mas-Capdevila, A., Teichenne, J., Domenech-Coca, C., Caimari, A., Del Bas, J. M., Escoté, X., & Crescenti, A. (2020a). Effect of hesperidin on cardiovascular disease risk factors: The role of intestinal microbiota on hesperidin bioavailability. Nutrients, 12(5), 1488.
  • Mas-Capdevila, A., Teichenne, J., Domenech-Coca, C., Caimari, A., Del Bas, J. M., Escoté, X., & Crescenti, A. J. N. (2020b). Effect of hesperidin on cardiovascular disease risk factors: The role of intestinal microbiota on hesperidin bioavailability. 12(5), 1488.
  • Nagayama, S., Aoki, K., Komine, S., Arai, N., Endo, S., & Ohmori, H. (2023). Improvement of low‐intensity long‐time running performance in rats by intake of glucosyl hesperidin. Physiological Reports, 11(2), e15413.
  • Nardarajah, D. (2014). Hesperidin-A short review. Research Journal of Pharmacy Technology, 7(1), 78-80.
  • Nectoux, A. M., Abe, C., Huang, S.-W., Ohno, N., Tabata, J., Miyata, Y., Tanaka, K., Tanaka, T., Yamamura, H., & Matsui, T. (2019). Absorption and metabolic behavior of hesperidin (rutinosylated hesperetin) after single oral administration to Sprague-Dawley rats. Journal of agricultural food chemistry, 67(35), 9812-9819.
  • Nie, T., Wang, X., Li, A., Shan, A., & Ma, J. (2024). The promotion of fatty acid β-oxidation by hesperidin via activating SIRT1/PGC1α to improve NAFLD induced by a high-fat diet. Food Function, 15(1), 372-386.
  • Oh, H.-J., Jin, H., & Lee, B.-Y. (2023). Hesperidin ameliorates sarcopenia through the regulation of inflammaging and the AKT/mTOR/FoxO3a signaling pathway in 22–26-month-old mice. Cells, 12(15), 2015.
  • Parhiz, H., Roohbakhsh, A., Soltani, F., Rezaee, R., & Iranshahi, M. (2015). Antioxidant and anti‐inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytotherapy research, 29(3), 323-331.
  • Peake, J. M., Neubauer, O., Della Gatta, P. A., & Nosaka, K. (2017). Muscle damage and inflammation during recovery from exercise. Journal of Applied Physiology.
  • Priviero, F. B., Gonçalves, T. T., Lazaro, C. M., De Mateo, F. G., Campos, M. C. B., Claudino, M. A., & de Oliveira Carvalho, P. (2017). G‐Hesperidin Supplementation Impairs the Beneficial Effects of Physical Exercise on the Body Composition, Biochemistry Profile and Oxidative Stress in Obese Rats. The FASEB Journal, 31, 1019.1013-1019.1013.
  • Pyrzynska, K. Hesperidin: a review on extraction methods, stability and biological activities. Nutrients. 2022; 14 (12): 2387. In.
  • Rajan, P., Natraj, P., Ranaweera, S. S., Dayarathne, L. A., Lee, Y. J., & Han, C.-H. (2022). Anti-diabetic effect of hesperidin on palmitate (PA)-treated HepG2 cells and high fat diet-induced obese mice. Food research international, 162, 112059.
  • Reid, M. B., & Durham, W. J. (2002). Generation of reactive oxygen and nitrogen species in contracting skeletal muscle: potential impact on aging. Annals of the New York Academy of Sciences, 959(1), 108-116.
  • Rizza, S., Muniyappa, R., Iantorno, M., Kim, J.-a., Chen, H., Pullikotil, P., Senese, N., Tesauro, M., Lauro, D., & Cardillo, C. (2011). Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. The Journal of Clinical Endocrinology Metabolism, 96(5), E782-E792.
  • Roohbakhsh, A., Parhiz, H., Soltani, F., Rezaee, R., & Iranshahi, M. (2015). Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life sciences, 124, 64-74.
  • Roussel, M., Mattei, J., Le Fur, Y., Ghattas, B., Cozzone, P., & Bendahan, D. (2003). Metabolic determinants of the onset of acidosis in exercising human muscle: a 31P-MRS study. Journal of Applied Physiology, 94(3), 1145-1152.
  • Ruiz-Iglesias, P., Massot-Cladera, M., Pérez-Cano, F. J., & Castell, M. (2022). Influence of Diets Enriched with Flavonoids (Cocoa and Hesperidin) on the Systemic Immunity of Intensively Trained and Exhausted Rats. Biomolecules, 12(12), 1893.
  • Saghiv, M. S., & Sagiv, M. S. (2020). Oxygen uptake and anaerobic performances. In Basic exercise physiology (pp. 149–205). Springer. https://doi.org/10.1007/978-3-030-48806-2_3
  • Sawikr, Y., Yarla, N. S., Peluso, I., Kamal, M. A., Aliev, G., & Bishayee, A. (2017). Neuroinflammation in Alzheimer's disease: the preventive and therapeutic potential of polyphenolic nutraceuticals. Advances in protein chemistry structural biology, 108, 33-57.
  • Shabani, M., Jamali, Z., Bayrami, D., & Salimi, A. (2024). Hesperidin via maintenance of mitochondrial function and antioxidant activity protects lithium toxicity in rat heart isolated mitochondria. Drug Chemical Toxicology, 47(5), 597-605.
  • Shokri Afra, H., Zangooei, M., Meshkani, R., Ghahremani, M. H., Ilbeigi, D., Khedri, A., Shahmohamadnejad, S., Khaghani, S., & Nourbakhsh, M. (2019). Hesperetin is a potent bioactivator that activates SIRT1-AMPK signaling pathway in HepG2 cells. Journal of Physiology Biochemistry, 75, 125-133.
  • Stevens, B. R., Godfrey, M. D., Kaminski, T. W., & Braith, R. W. (2000). High-intensity dynamic human muscle performance enhanced by a metabolic intervention. Medicine Science in Sports Exercise, 32(12), 2102-2108.
  • Sundaram, R., Nandhakumar, E., & Haseena Banu, H. (2019). Hesperidin, a citrus flavonoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Toxicology mechanisms methods, 29(9), 644-653.
  • Takumi, H., Nakamura, H., Simizu, T., Harada, R., Kometani, T., Nadamoto, T., Mukai, R., Murota, K., Kawai, Y., & Terao, J. (2012). Bioavailability of orally administered water-dispersible hesperetin and its effect on peripheral vasodilatation in human subjects: implication of endothelial functions of plasma conjugated metabolites. Food Function, 3(4), 389-398.
  • Tanabe, Y., Fujii, N., & Suzuki, K. (2021). Dietary supplementation for attenuating exercise-induced muscle damage and delayed-onset muscle soreness in humans. Nutrients, 14(1), 70.
  • Tejada, S., Pinya, S., Martorell, M., Capó, X., Tur, J. A., Pons, A., & Sureda, A. (2018). Potential anti-inflammatory effects of hesperidin from the genus citrus. Current medicinal chemistry, 25(37), 4929-4945.
  • Thirupathi, A., & Pinho, R. A. (2018). Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. Journal of Physiology Biochemistry, 74, 359-367.
  • Tian, M., Han, Y.-B., Zhao, C.-C., Liu, L., & Zhang, F.-L. (2021). Hesperidin alleviates insulin resistance by improving HG-induced oxidative stress and mitochondrial dysfunction by restoring miR-149. Diabetology Metabolic Syndrome, 13(1), 50.
  • Tidball, J. G. (2011). Mechanisms of muscle injury, repair, and regeneration. Comprehensive Physiology(4), 2029-2062.
  • Tipton, K. D., Hamilton, D. L., & Gallagher, I. J. (2018). Assessing the role of muscle protein breakdown in response to nutrition and exercise in humans. Sports medicine, 48, 53-64.
  • Tomás-Navarro, M., Vallejo, F., Borrego, F., & Tomás-Barberán, F. A. (2014). Encapsulation and micronization effectively improve orange beverage flavanone bioavailability in humans. Journal of agricultural food chemistry, 62(39), 9458-9462.
  • Tu, H., & Li, Y.-L. (2023). Inflammation balance in skeletal muscle damage and repair. Frontiers in Immunology, 14, 1133355.
  • Umeno, A., Horie, M., Murotomi, K., Nakajima, Y., & Yoshida, Y. (2016). Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules, 21(6), 708.
  • Wang, X., Nie, T., Li, A., & Ma, J. (2025). Hesperidin mitigated deoxynivalenol-induced liver injury by inhibiting ROS/P53/PGC-1α-mediated disruption of mitochondrial dynamics and PANoptosis. Phytomedicine, 142, 156747.
  • Wilmsen, P. K., Spada, D. S., & Salvador, M. (2005). Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. Journal of agricultural food chemistry, 53(12), 4757-4761.
  • Xin, S., Song, W., Mao, J., Hu, P., Chen, Z., Liu, J., Song, X., Fang, Q., & Cui, K. (2024). Therapeutic potential of hesperidin in diabetes mellitus‐induced erectile dysfunction through Nrf2‐mediated ferroptosis and oxidative stress. Andrology.
  • Xiong, H., Wang, J., Ran, Q., Lou, G., Peng, C., Gan, Q., Hu, J., Sun, J., Yao, R., & Huang, Q. (2019). Hesperidin: A therapeutic agent for obesity. Drug design, development therapy, 3855-3866.
  • Yamamoto, M., Jokura, H., Hashizume, K., Ominami, H., Shibuya, Y., Suzuki, A., Hase, T., & Shimotoyodome, A. (2013). Hesperidin metabolite hesperetin-7-O-glucuronide, but not hesperetin-3′-O-glucuronide, exerts hypotensive, vasodilatory, and anti-inflammatory activities. Food Function, 4(9), 1346-1351.
  • Yari, Z., Movahedian, M., Imani, H., Alavian, S. M., Hedayati, M., & Hekmatdoost, A. (2020). The effect of hesperidin supplementation on metabolic profiles in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. European journal of nutrition, 59, 2569-2577.

THE EFFECTS OF HESPERIDIN ON EXERCISE PERFORMANCE: A CURRENT REVIEW

Year 2025, Volume: 6 Issue: 3, 132 - 145, 22.12.2025

Abstract

This study aims to evaluate the potential effects of the natural flavonoid hesperidin on exercise performance, recovery processes, and muscle health in light of current scientific evidence. Hesperidin is thought to support physical performance through its antioxidant, anti-inflammatory, vasodilatory, and metabolic regulatory properties. An eight-week supplementation with 500 mg/day 2S-hesperidin in amateur cyclists has been shown to increase functional threshold power by approximately 3.2%, maximal power output by 2.7%, and mean power in the Wingate test by up to 4%. Additionally, post-exercise lactate concentrations were 8–12% lower, while bicarbonate and base excess levels were 5–10% higher; an increase of 1–2% in muscle mass and a 1.5–2% reduction in body fat have also been reported. Significant improvements in antioxidant capacity have been observed; for example, superoxide dismutase activity increased by 15–20%, while inflammatory markers such as MCP-1 and GSSG decreased by 10–15%. Hesperidin has been reported to enhance nitric oxide bioavailability, supporting vasodilation and thus maintaining aerobic capacity and muscle oxygenation; it also improves mitochondrial function, optimizing fat oxidation and energy production. However, low bioavailability (particularly <20% absorption in conventional forms), variations in formulation, and interindividual physiological response variability may limit its practical impact. Most current studies are short-term (≤8 weeks) with small sample sizes (mostly n = 30–40), restricting the generalizability of findings. Therefore, longer-term (≥12 weeks), multicenter, randomized controlled trials with >100 participants and studies in different sports disciplines are needed to clarify the sport-specific effects of hesperidin on performance and recovery processes.

References

  • Adefegha, S. A., Saccol, R. d. S. P., Jantsch, M. H., da Silveira, K. L., & Leal, D. B. R. (2021). Hesperidin mitigates inflammation and modulates ectoenzymes activity and some cellular processes in complete Freund’s adjuvant-induced arthritic rats. Journal of Pharmacy Pharmacology, 73(11), 1547-1561.
  • Ahmad, A., Afzaal, M., Saeed, F., Ali, S. W., Imran, A., Zaidi, S. Y. R., Saleem, M. A., Hussain, M., & Al Jbawi, E. (2023). A comprehensive review of the therapeutic potential of citrus bioflavonoid hesperidin against lifestyle-related disorders. Cogent Food Agriculture, 9(1), 2226427.
  • Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M., & Al-Mssallem, M. Q. (2022). Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 27(9), 2901.
  • Alamoudi, J. A., El-Masry, T. A., El-Nagar, M. M., El Zahaby, E. I., Elmorshedy, K. E., Gaballa, M. M., Alshawwa, S. Z., Alsunbul, M., Alharthi, S., & Ibrahim, H. A. (2024). Chitosan/hesperidin nanoparticles formulation: a promising approach against ethanol-induced gastric ulcers via Sirt1/FOXO1/PGC-1α/HO-1 pathway. Frontiers in Pharmacology, 15, 1433793.
  • Alessandrello, C., Gammeri, L., Sanfilippo, S., Cordiano, R., Brunetto, S., Casciaro, M., & Gangemi, S. (2021). A spotlight on lime: a review about adverse reactions and clinical manifestations due to Citrus aurantiifolia. Clinical Molecular Allergy, 19, 1-10.
  • Antunes, M. S., Jesse, C. R., Ruff, J. R., de Oliveira Espinosa, D., Gomes, N. S., Altvater, E. E. T., Donato, F., Giacomeli, R., & Boeira, S. P. (2016). Hesperidin reverses cognitive and depressive disturbances induced by olfactory bulbectomy in mice by modulating hippocampal neurotrophins and cytokine levels and acetylcholinesterase activity. European Journal of Pharmacology, 789, 411-420.
  • Bansal, K., Bhati, H., & Bajpai, M. (2024). New insights into therapeutic applications and nanoformulation approaches of hesperidin: an updated review. Pharmacological research-modern Chinese medicine, 10, 100363.
  • Bartolomei, S., Sadres, E., Church, D. D., Arroyo, E., Iii, J. A. G., Varanoske, A. N., Wang, R., Beyer, K. S., Oliveira, L. P., & Stout, J. R. (2017). Comparison of the recovery response from high-intensity and high-volume resistance exercise in trained men. European Journal of Applied Physiology, 117, 1287-1298.
  • Bassett Jr, D. R., & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine Science in Sports Exercise, 32(1), 70.
  • Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., & Freeman, B. A. (1990). Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences, 87(4), 1620-1624.
  • Bussmann, A. J., Zaninelli, T. H., Saraiva-Santos, T., Fattori, V., Guazelli, C. F., Bertozzi, M. M., Andrade, K. C., Ferraz, C. R., Camilios-Neto, D., & Casella, A. M. (2022). The flavonoid hesperidin methyl chalcone targets cytokines and oxidative stress to reduce diclofenac-induced acute renal injury: Contribution of the Nrf2 redox-sensitive pathway. Antioxidants, 11(7), 1261.
  • Buzdağlı, Y., Eyipınar, C. D., Kacı, F. N., & Tekin, A. (2023). Effects of hesperidin on anti-inflammatory and antioxidant response in healthy people: a meta-analysis and meta-regression. International Journal of Environmental Health Research, 33(12), 1390-1405.
  • Chen, M., Gu, H., Ye, Y., Lin, B., Sun, L., Deng, W., Zhang, J., & Liu, J. (2010). Protective effects of hesperidin against oxidative stress of tert-butyl hydroperoxide in human hepatocytes. Food Chemical Toxicology, 48(10), 2980-2987.
  • Cheraghpour, M., Imani, H., Ommi, S., Alavian, S. M., Karimi‐Shahrbabak, E., Hedayati, M., Yari, Z., & Hekmatdoost, A. (2019). Hesperidin improves hepatic steatosis, hepatic enzymes, and metabolic and inflammatory parameters in patients with nonalcoholic fatty liver disease: A randomized, placebo‐controlled, double‐blind clinical trial. European journal of nutrition, 33(8), 2118-2125.
  • Choi, Y. H. (2025). Hesperidin protects C2C12 myoblasts from oxidative damage by reducing ROS-mediated mitochondrial damage and endoplasmic reticulum stress. Molecular Cellular Toxicology, 21(1), 251-261. Crescenti, A., Caimari, A., Alcaide-Hidalgo, J. M., Mariné-Casadó, R., Valls, R. M., Companys, J., Salamanca, P.,
  • Calderón-Pérez, L., Pla-Pagà, L., & Pedret, A. (2022). Hesperidin bioavailability is increased by the presence of 2S-diastereoisomer and micronization—a randomized, crossover and double-blind clinical trial. Nutrients, 14(12), 2481.
  • Dalle, S., Rossmeislova, L., & Koppo, K. (2017). The role of inflammation in age-related sarcopenia. Frontiers in physiology, 8, 1045.
  • De Oliveira, D. M., Dourado, G. K. Z. S., & Cesar, T. B. (2013). Hesperidin associated with continuous and interval swimming improved biochemical and oxidative biomarkers in rats. Journal of the International Society of Sports Nutrition, 10, 1-7.
  • Di Meo, S., Napolitano, G., & Venditti, P. (2019). Mediators of physical activity protection against ROS-linked skeletal muscle damage. International journal of molecular sciences, 20(12), 3024.
  • Dobiaš, L., Petrová, M., Vojtko, R., & Kristová, V. (2016). Long‐term treatment with hesperidin improves endothelium‐dependent vasodilation in femoral artery of spontaneously hypertensive rats: The involvement of NO‐synthase and Kv channels. Phytotherapy research, 30(10), 1665-1671.
  • Ekinci Akdemir, F. N., Gülçin, İ., Karagöz, B., Soslu, R., & Alwasel, S. H. (2016). A comparative study on the antioxidant effects of hesperidin and ellagic acid against skeletal muscle ischemia/reperfusion injury. Journal of enzyme inhibition medicinal chemistry, 31(sup4), 114-118.
  • Estruel-Amades, S., Massot-Cladera, M., Garcia-Cerdà, P., Pérez-Cano, F. J., Franch, À., Castell, M., & Camps-Bossacoma, M. (2019). Protective effect of hesperidin on the oxidative stress induced by an exhausting exercise in intensively trained rats. Nutrients, 11(4), 783.
  • Estruel-Amades, S., Massot-Cladera, M., Pérez-Cano, F. J., Franch, À., Castell, M., & Camps-Bossacoma, M. (2019). Hesperidin effects on gut microbiota and gut-associated lymphoid tissue in healthy rats. Nutrients, 11(2), 324.
  • Ganeshpurkar, A., & Saluja, A. (2019). The pharmacological potential of hesperidin. Guo, X., Li, K., Guo, A., & Li, E. (2020). Intestinal absorption and distribution of naringin, hesperidin, and their metabolites in mice. Journal of Functional Foods, 74, 104158.
  • Haghmorad, D., Mahmoudi, M. B., Salehipour, Z., Jalayer, Z., Rastin, M., Kokhaei, P., & Mahmoudi, M. (2017). Hesperidin ameliorates immunological outcome and reduces neuroinflammation in the mouse model of multiple sclerosis. Journal of neuroimmunology, 302, 23-33.
  • Hajialyani, M., Hosein Farzaei, M., Echeverría, J., Nabavi, S. M., Uriarte, E., & Sobarzo-Sánchez, E. (2019). Hesperidin as a neuroprotective agent: a review of animal and clinical evidence. Molecules, 24(3), 648.
  • Hegazy, W., Abdul-Hamid, M., Abdel-Rehiem, E. S., Abdel-Moneim, A., & Salah, M. (2023). The protective impact of hesperidin against carbimazole-induced hypothyroidism, via enhancement of inflammatory cytokines, histopathological alterations, and Nrf2/HO-1. Environmental Science Pollution Research, 30(18), 53589-53604.
  • Homayouni, F., Haidari, F., Hedayati, M., Zakerkish, M., & Ahmadi, K. (2018). Blood pressure lowering and anti‐inflammatory effects of hesperidin in type 2 diabetes; a randomized double‐blind controlled clinical trial. Phytotherapy research, 32(6), 1073-1079.
  • Imperatrice, M., Cuijpers, I., Troost, F. J., & Sthijns, M. M. (2022). Hesperidin functions as an ergogenic aid by increasing endothelial function and decreasing exercise-induced oxidative stress and inflammation, thereby contributing to improved exercise performance. Nutrients, 14(14), 2955.
  • Iskender, H., Dokumacioglu, E., Sen, T. M., Ince, I., Kanbay, Y., & Saral, S. (2017). The effect of hesperidin and quercetin on oxidative stress, NF-κB and SIRT1 levels in a STZ-induced experimental diabetes model. Biomedicine Pharmacotherapy, 90, 500-508.
  • Jamal, A., Brettle, H., Jamil, D. A., Tran, V., Diep, H., Bobik, A., van der Poel, C., Vinh, A., Drummond, G. R., & Thomas, C. J. (2024). Reduced Insulin Resistance and Oxidative Stress in a Mouse Model of Metabolic Syndrome following Twelve Weeks of Citrus Bioflavonoid Hesperidin Supplementation: A Dose–Response Study. Biomolecules, 14(6), 637.
  • Jarvis, K., Woodward, M., Debold, E. P., & Walcott, S. (2018). Acidosis affects muscle contraction by slowing the rates myosin attaches to and detaches from actin. Journal of muscle research cell motility, 39, 135-147.
  • Jia, Q., Li, L., Wang, X., Wang, Y., Jiang, K., Yang, K., Cong, J., Cai, G., & Ling, J. (2022). Hesperidin promotes gastric motility in rats with functional dyspepsia by regulating Drp1-mediated ICC mitophagy. Frontiers in Pharmacology, 13, 945624.
  • Jones, A. M., & Carter, H. (2000). The effect of endurance training on parameters of aerobic fitness. Sports medicine, 29, 373-386.
  • Joyner, M. J., & Casey, D. P. (2015). Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiological reviews.
  • Jung, U. J., & Kim, S. R. (2018). Beneficial effects of flavonoids against Parkinson's disease. Journal of medicinal food, 21(5), 421-432.
  • Kalita, B., & Patwary, B. N. (2020). Formulation and in vitro evaluation of hesperidin-phospholipid complex and its antioxidant potential. Current Drug Therapy, 15(1), 28-36.
  • Kapoor, M. P., Moriwaki, M., Uguri, K., Kito, K., Timm, D., & Abe, A. (2023). Improved bioavailability of hesperetin 7-O-glucoside inclusion complex with β-cyclodextrin in Sprague-Dawley rats and healthy humans. Journal of Functional Foods, 107, 105708.
  • Kazak, F., Yarım, G., Anadol, E., & Salt, A. (2024). Hesperidin alleviates inflammation in the metabolic syndrome model Hesperidin ublažava upalu kod modela štakora s metaboličkim sindromom. Veterinarski arhiv, 94(1).
  • Khalilabad, S. N., Mirzaei, A., Askari, V. R., Mirzaei, A., Khademi, R., & Rahimi, V. B. (2024). How hesperidin and Hesperetin, as promising food Supplements, combat cardiovascular Diseases: A systematic review from bench to bed. Journal of Functional Foods, 120, 106358.
  • Kodous, A. S., Abdel-Maksoud, M. A., El-Tayeb, M. A., Al-Sherif, D. A., Mohamed, S. S. A., Ghobashy, M. M., Emad, A. M., Abd El‐Halim, S. M., Hagras, S. A., & Mani, S. (2024). Hesperidin-loaded PVA/alginate hydrogel: targeting NFκB/iNOS/COX-2/TNF-α inflammatory signaling pathway. Frontiers in Immunology, 15, 1347420.
  • Kosari-Nasab, M., Shokouhi, G., Ghorbanihaghjo, A., Abbasi, M. M., & Salari, A.-A. (2018). Hesperidin attenuates depression-related symptoms in mice with mild traumatic brain injury. Life sciences, 213, 198-205.
  • Li, Y., Kandhare, A. D., Mukherjee, A. A., & Bodhankar, S. L. (2019). Acute and sub-chronic oral toxicity studies of hesperidin isolated from orange peel extract in Sprague Dawley rats. Regulatory Toxicology Pharmacology, 105, 77-85.
  • Liu, Y., Shen, X., Sha, M., Feng, Z., & Liu, Y. (2023). Natural bioactive flavonoids as promising agents in alleviating exercise-induced fatigue. Food Bioscience, 51, 102360.
  • Lorzadeh, E., Ramezani-Jolfaie, N., Mohammadi, M., Khoshbakht, Y., & Salehi-Abargouei, A. (2019). The effect of hesperidin supplementation on inflammatory markers in human adults: a systematic review and meta-analysis of randomized controlled clinical trials. Chemico-biological interactions, 307, 8-15.
  • Luque, M. Z., Aguiar, A. F., da Silva-Araújo, A. K., Zaninelli, T. H., Heintz, O. K., Saraiva-Santos, T., Bertozzi, M. M., Souza, N. A., Júnior, E. O., & Verri Jr, W. A. (2023). Evaluation of a preemptive intervention regimen with hesperidin methyl chalcone in delayed-onset muscle soreness in young adults: a randomized, double-blinded, and placebo-controlled trial study. European Journal of Applied Physiology, 123(9), 1949-1964.
  • Ma, R., You, H., Liu, H., Bao, J., & Zhang, M. (2024). Hesperidin: a citrus plant component, plays a role in the central nervous system. Heliyon, 10(21).
  • Magherini, F., Fiaschi, T., Marzocchini, R., Mannelli, M., Gamberi, T., Modesti, P. A., & Modesti, A. (2019). Oxidative stress in exercise training: The involvement of inflammation and peripheral signals. Free radical research, 53(11-12), 1155-1165.
  • Maneesai, P., Bunbupha, S., Potue, P., Berkban, T., Kukongviriyapan, U., Kukongviriyapan, V., Prachaney, P., & Pakdeechote, P. (2018). Hesperidin prevents nitric oxide deficiency-induced cardiovascular remodeling in rats via suppressing TGF-β1 and MMPs protein expression. Nutrients, 10(10), 1549.
  • Martinez-Noguera, F., Marin-Pagan, C., Carlos-Vivas, J., & Alcaraz, P. (2021). 8-week supplementation of 2S-hesperidin modulates antioxidant and inflammatory status after exercise until exhaustion in amateur cyclists. Antioxidants, 10(3).
  • Martínez-Noguera, F. J., Alcaraz, P. E., Carlos-Vivas, J., & Marín-Pagán, C. (2022). Chronic supplementation of 2S-hesperidin improves acid-base status and decreases lactate at FatMax, at ventilatory threshold 1 and 2 and after an incremental test in amateur cyclists. Biology, 11(5), 736.
  • Martínez-Noguera, F. J., Alcaraz, P. E., Carlos-Vivas, J., & Marín-Pagán, C. (2023). 8 weeks of 2 S-hesperidin prevents a decrease in p O 2 at submaximal intensity in amateur cyclists in off-season: randomized controlled trial. Food Function, 14(6), 2750-2767.
  • Martínez-Noguera, F. J., Marín-Pagán, C., Carlos-Vivas, J., & Alcaraz, P. E. (2020). Effects of 8 weeks of 2S-hesperidin supplementation on performance in amateur cyclists. Nutrients, 12(12), 3911.
  • Martínez-Noguera, F. J., Marín-Pagán, C., Carlos-Vivas, J., Rubio-Arias, J. A., & Alcaraz, P. E. (2019). Acute effects of hesperidin in oxidant/antioxidant state markers and performance in amateur cyclists. Nutrients, 11(8), 1898.
  • Martínez, A. P., Diaz, M. C., Romero, L. A., Redha, A. A., Zare, R., Hernandez, S. V., Prokopidis, K., & Clifford, T. (2024). Effects of Vaccinium berries (blueberries, cranberries and bilberries) on oxidative stress, inflammation, exercise performance, and recovery–a systematic review. Food Function, 15(2), 444-459.
  • Mas-Capdevila, A., Teichenne, J., Domenech-Coca, C., Caimari, A., Del Bas, J. M., Escoté, X., & Crescenti, A. (2020a). Effect of hesperidin on cardiovascular disease risk factors: The role of intestinal microbiota on hesperidin bioavailability. Nutrients, 12(5), 1488.
  • Mas-Capdevila, A., Teichenne, J., Domenech-Coca, C., Caimari, A., Del Bas, J. M., Escoté, X., & Crescenti, A. J. N. (2020b). Effect of hesperidin on cardiovascular disease risk factors: The role of intestinal microbiota on hesperidin bioavailability. 12(5), 1488.
  • Nagayama, S., Aoki, K., Komine, S., Arai, N., Endo, S., & Ohmori, H. (2023). Improvement of low‐intensity long‐time running performance in rats by intake of glucosyl hesperidin. Physiological Reports, 11(2), e15413.
  • Nardarajah, D. (2014). Hesperidin-A short review. Research Journal of Pharmacy Technology, 7(1), 78-80.
  • Nectoux, A. M., Abe, C., Huang, S.-W., Ohno, N., Tabata, J., Miyata, Y., Tanaka, K., Tanaka, T., Yamamura, H., & Matsui, T. (2019). Absorption and metabolic behavior of hesperidin (rutinosylated hesperetin) after single oral administration to Sprague-Dawley rats. Journal of agricultural food chemistry, 67(35), 9812-9819.
  • Nie, T., Wang, X., Li, A., Shan, A., & Ma, J. (2024). The promotion of fatty acid β-oxidation by hesperidin via activating SIRT1/PGC1α to improve NAFLD induced by a high-fat diet. Food Function, 15(1), 372-386.
  • Oh, H.-J., Jin, H., & Lee, B.-Y. (2023). Hesperidin ameliorates sarcopenia through the regulation of inflammaging and the AKT/mTOR/FoxO3a signaling pathway in 22–26-month-old mice. Cells, 12(15), 2015.
  • Parhiz, H., Roohbakhsh, A., Soltani, F., Rezaee, R., & Iranshahi, M. (2015). Antioxidant and anti‐inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytotherapy research, 29(3), 323-331.
  • Peake, J. M., Neubauer, O., Della Gatta, P. A., & Nosaka, K. (2017). Muscle damage and inflammation during recovery from exercise. Journal of Applied Physiology.
  • Priviero, F. B., Gonçalves, T. T., Lazaro, C. M., De Mateo, F. G., Campos, M. C. B., Claudino, M. A., & de Oliveira Carvalho, P. (2017). G‐Hesperidin Supplementation Impairs the Beneficial Effects of Physical Exercise on the Body Composition, Biochemistry Profile and Oxidative Stress in Obese Rats. The FASEB Journal, 31, 1019.1013-1019.1013.
  • Pyrzynska, K. Hesperidin: a review on extraction methods, stability and biological activities. Nutrients. 2022; 14 (12): 2387. In.
  • Rajan, P., Natraj, P., Ranaweera, S. S., Dayarathne, L. A., Lee, Y. J., & Han, C.-H. (2022). Anti-diabetic effect of hesperidin on palmitate (PA)-treated HepG2 cells and high fat diet-induced obese mice. Food research international, 162, 112059.
  • Reid, M. B., & Durham, W. J. (2002). Generation of reactive oxygen and nitrogen species in contracting skeletal muscle: potential impact on aging. Annals of the New York Academy of Sciences, 959(1), 108-116.
  • Rizza, S., Muniyappa, R., Iantorno, M., Kim, J.-a., Chen, H., Pullikotil, P., Senese, N., Tesauro, M., Lauro, D., & Cardillo, C. (2011). Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. The Journal of Clinical Endocrinology Metabolism, 96(5), E782-E792.
  • Roohbakhsh, A., Parhiz, H., Soltani, F., Rezaee, R., & Iranshahi, M. (2015). Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life sciences, 124, 64-74.
  • Roussel, M., Mattei, J., Le Fur, Y., Ghattas, B., Cozzone, P., & Bendahan, D. (2003). Metabolic determinants of the onset of acidosis in exercising human muscle: a 31P-MRS study. Journal of Applied Physiology, 94(3), 1145-1152.
  • Ruiz-Iglesias, P., Massot-Cladera, M., Pérez-Cano, F. J., & Castell, M. (2022). Influence of Diets Enriched with Flavonoids (Cocoa and Hesperidin) on the Systemic Immunity of Intensively Trained and Exhausted Rats. Biomolecules, 12(12), 1893.
  • Saghiv, M. S., & Sagiv, M. S. (2020). Oxygen uptake and anaerobic performances. In Basic exercise physiology (pp. 149–205). Springer. https://doi.org/10.1007/978-3-030-48806-2_3
  • Sawikr, Y., Yarla, N. S., Peluso, I., Kamal, M. A., Aliev, G., & Bishayee, A. (2017). Neuroinflammation in Alzheimer's disease: the preventive and therapeutic potential of polyphenolic nutraceuticals. Advances in protein chemistry structural biology, 108, 33-57.
  • Shabani, M., Jamali, Z., Bayrami, D., & Salimi, A. (2024). Hesperidin via maintenance of mitochondrial function and antioxidant activity protects lithium toxicity in rat heart isolated mitochondria. Drug Chemical Toxicology, 47(5), 597-605.
  • Shokri Afra, H., Zangooei, M., Meshkani, R., Ghahremani, M. H., Ilbeigi, D., Khedri, A., Shahmohamadnejad, S., Khaghani, S., & Nourbakhsh, M. (2019). Hesperetin is a potent bioactivator that activates SIRT1-AMPK signaling pathway in HepG2 cells. Journal of Physiology Biochemistry, 75, 125-133.
  • Stevens, B. R., Godfrey, M. D., Kaminski, T. W., & Braith, R. W. (2000). High-intensity dynamic human muscle performance enhanced by a metabolic intervention. Medicine Science in Sports Exercise, 32(12), 2102-2108.
  • Sundaram, R., Nandhakumar, E., & Haseena Banu, H. (2019). Hesperidin, a citrus flavonoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Toxicology mechanisms methods, 29(9), 644-653.
  • Takumi, H., Nakamura, H., Simizu, T., Harada, R., Kometani, T., Nadamoto, T., Mukai, R., Murota, K., Kawai, Y., & Terao, J. (2012). Bioavailability of orally administered water-dispersible hesperetin and its effect on peripheral vasodilatation in human subjects: implication of endothelial functions of plasma conjugated metabolites. Food Function, 3(4), 389-398.
  • Tanabe, Y., Fujii, N., & Suzuki, K. (2021). Dietary supplementation for attenuating exercise-induced muscle damage and delayed-onset muscle soreness in humans. Nutrients, 14(1), 70.
  • Tejada, S., Pinya, S., Martorell, M., Capó, X., Tur, J. A., Pons, A., & Sureda, A. (2018). Potential anti-inflammatory effects of hesperidin from the genus citrus. Current medicinal chemistry, 25(37), 4929-4945.
  • Thirupathi, A., & Pinho, R. A. (2018). Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. Journal of Physiology Biochemistry, 74, 359-367.
  • Tian, M., Han, Y.-B., Zhao, C.-C., Liu, L., & Zhang, F.-L. (2021). Hesperidin alleviates insulin resistance by improving HG-induced oxidative stress and mitochondrial dysfunction by restoring miR-149. Diabetology Metabolic Syndrome, 13(1), 50.
  • Tidball, J. G. (2011). Mechanisms of muscle injury, repair, and regeneration. Comprehensive Physiology(4), 2029-2062.
  • Tipton, K. D., Hamilton, D. L., & Gallagher, I. J. (2018). Assessing the role of muscle protein breakdown in response to nutrition and exercise in humans. Sports medicine, 48, 53-64.
  • Tomás-Navarro, M., Vallejo, F., Borrego, F., & Tomás-Barberán, F. A. (2014). Encapsulation and micronization effectively improve orange beverage flavanone bioavailability in humans. Journal of agricultural food chemistry, 62(39), 9458-9462.
  • Tu, H., & Li, Y.-L. (2023). Inflammation balance in skeletal muscle damage and repair. Frontiers in Immunology, 14, 1133355.
  • Umeno, A., Horie, M., Murotomi, K., Nakajima, Y., & Yoshida, Y. (2016). Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules, 21(6), 708.
  • Wang, X., Nie, T., Li, A., & Ma, J. (2025). Hesperidin mitigated deoxynivalenol-induced liver injury by inhibiting ROS/P53/PGC-1α-mediated disruption of mitochondrial dynamics and PANoptosis. Phytomedicine, 142, 156747.
  • Wilmsen, P. K., Spada, D. S., & Salvador, M. (2005). Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. Journal of agricultural food chemistry, 53(12), 4757-4761.
  • Xin, S., Song, W., Mao, J., Hu, P., Chen, Z., Liu, J., Song, X., Fang, Q., & Cui, K. (2024). Therapeutic potential of hesperidin in diabetes mellitus‐induced erectile dysfunction through Nrf2‐mediated ferroptosis and oxidative stress. Andrology.
  • Xiong, H., Wang, J., Ran, Q., Lou, G., Peng, C., Gan, Q., Hu, J., Sun, J., Yao, R., & Huang, Q. (2019). Hesperidin: A therapeutic agent for obesity. Drug design, development therapy, 3855-3866.
  • Yamamoto, M., Jokura, H., Hashizume, K., Ominami, H., Shibuya, Y., Suzuki, A., Hase, T., & Shimotoyodome, A. (2013). Hesperidin metabolite hesperetin-7-O-glucuronide, but not hesperetin-3′-O-glucuronide, exerts hypotensive, vasodilatory, and anti-inflammatory activities. Food Function, 4(9), 1346-1351.
  • Yari, Z., Movahedian, M., Imani, H., Alavian, S. M., Hedayati, M., & Hekmatdoost, A. (2020). The effect of hesperidin supplementation on metabolic profiles in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. European journal of nutrition, 59, 2569-2577.
There are 94 citations in total.

Details

Primary Language Turkish
Subjects Sports Nutrition
Journal Section Review
Authors

Umut Yılmaz 0000-0002-6115-1510

Ebubekir Can 0009-0007-0896-8074

Muahmmer Raşit İnaç 0009-0008-5547-3805

Ufuk Han Bağaçlı 0009-0000-1679-1554

Yusuf Buzdağlı 0000-0003-1809-5194

Submission Date October 2, 2025
Acceptance Date November 13, 2025
Publication Date December 22, 2025
Published in Issue Year 2025 Volume: 6 Issue: 3

Cite

APA Yılmaz, U., Can, E., İnaç, M. R., … Bağaçlı, U. H. (2025). HESPERİDİNİN EGZERSİZ PERFORMANSI ÜZERİNE ETKİSİ: GÜNCEL BİR DERLEME. Sivas Cumhuriyet Üniversitesi Spor Bilimleri Dergisi, 6(3), 132-145.

s