Araştırma Makalesi
BibTex RIS Kaynak Göster

DEVELOPMENT OF A LOW-COST JUMP MAT BASED ON GROUND REACTION FORCE MEASUREMENT USING PIEZORESISTIVE FOIL

Yıl 2025, Cilt: 6 Sayı: 3, 48 - 55, 22.12.2025

Öz

This study aimed to develop a low-cost and portable jump mat prototype capable of measuring ground reaction force (GRF) during the vertical jump test, which is frequently used in sports performance assessment. Traditional force platforms are expensive and complex, making them unsuitable for field applications. To address this limitation, a flexible mat was designed using Velostat® foil, a piezoresistive material whose resistance changes under mechanical pressure. The mat structure consists of a piezoresistive layer placed between two conductive sheets, enabling the conversion of applied force into electrical signals. For calibration, weights ranging from 2.5 kg to 80 kg were applied, and the recorded voltage outputs were used to establish an exponential model that best explained the static loading data. In dynamic tests, 21 squat jumps were performed, and the resulting force–time curves resembled those obtained from traditional force platforms; however, irregular fluctuations above the baseline were observed, likely due to surface area variations and foil bending. Analyses revealed no significant relationship between jump impulse force and flight time (p = .738), indicating that the mat could not reliably measure propulsive force. Nonetheless, since it can accurately detect the moments of take-off and landing, the device shows potential for estimating jump height based on flight time.

Proje Numarası

TYL2024-13492

Kaynakça

  • Aragón‑Vargas, L. F. (2000). Evaluation of four vertical jump tests: Methodology, reliability, and validity. Measurement in Physical Education and Exercise Science, 4(4), 215–228.
  • Balsalobre‑Fernández, C., Glaister, M., & Lockey, R. A. (2015). The validity and reliability of an iPhone app for measuring vertical jump performance. The Journal of Sports Medicine and Physical Fitness, 55(12), 1574–1579.
  • Bishop, C., Turner, A., & Read, P. (2020). A review of the assessment of inter‑limb asymmetries: A practitioner’s guide. Journal of Strength and Conditioning Research, 34(3), 856–868. https://doi.org/10.1519/JSC.0000000000003039
  • Emamian Shirazi, S. A., Hashemi Oskouei, A., & Hejazi Dinan, P. (2022). Correlation of Vertical Jump Height with Ground Reaction Force and Anthropometric Parameters of Male Athletes. Thrita, 11(2), e131432. https://doi.org/10.5812/thrita-131432
  • Holleczek, T., Schlaefer, A., & Knaebel, H. (2020). Characterization of Piezoresistive Foils (Velostat®) for Force Measurement. Sensors, 20(21), 6061. https://doi.org/10.3390/s20216061
  • Khan, R., & Pletz, J. (2018). A low‑cost, open‑source force plate for biomechanics research. Sensors, 18(12), 4349. https://doi.org/10.3390/s18124349
  • Miller, J. D., Cabarkapa, D., Miller, A. J., Frazer, L. L., Templin, T. N., Eliason, T. D., Garretson, S. K., Fry, A. C., & Berkland, C. J. (2023). Novel 3D Force Sensors for a Cost-Effective 3D Force Plate for Biomechanical Analysis. Sensors, 23(9), 4437. https://doi.org/10.3390/s23094437
  • Salibindla, S., Ripoche, B., Lai, D. T. H., & Maas, S. (2013). Characterization of a new flexible pressure sensor for body sensor networks. Sensors, 13(7), 8963–8980. https://doi.org/10.3390/s130708963
  • Shin, H., & Lee, B. W. (2016). Feasibility study of sitting posture monitoring based on piezoresistive conductive film‑based flexible force sensor. Journal of the Korea Institute of Information and Communication Engineering, 20(2), 427–434.
  • Villa, G., Bonfiglio, A., Galli, M., & Cimolin, V. (2024). Vertical Jump Height Estimation Using Low-Sampling IMU in Countermovement Jumps: A Feasible Alternative to Motion Capture and Force Platforms. Sensors, 24(24), 7877. https://doi.org/10.3390/s24247877
  • Zhang, Y., et al. (2018). Design of a textile‑based flexible sensor array for mapping plantar pressure. Sensors, 18(12), 4195. https://doi.org/10.3390/s18124195
  • Zhao, Z., et al. (2019). Highly sensitive flexible piezoresistive sensor based on a carbon black/PDMS composite for wearable electronics. Sensors and Actuators A: Physical, 296, 111–118. https://doi.org/10.1016/j.sna.2019.06.017
  • Zhong, J., Ma, Z., Li, H., & Liu, S. (2020). Flexible piezoresistive sensor: A review. Science and Technology of Advanced Materials, 21(1), 178–208. https://doi.org/10.1080/14686996.2020.1722745

PİEZOREZİSTİF FOLYO KULLANARAK YER TEPKİ KUVVETİ ÖLÇÜMÜNE DAYALI DÜŞÜK MALİYETLİ SIÇRAMA MATI GELİŞTİRİLMESİ

Yıl 2025, Cilt: 6 Sayı: 3, 48 - 55, 22.12.2025

Öz

Bu çalışmada, spor performansının değerlendirilmesinde sıkça kullanılan dikey sıçrama testinde yer tepki kuvvetini (GRF) ölçebilen, düşük maliyetli ve taşınabilir bir sıçrama matı prototipi geliştirilmesi amaçlanmıştır. Geleneksel kuvvet platformları yüksek maliyetli ve karmaşık yapılı olduğu için saha koşullarına uygun değildir. Bu nedenle, mekanik baskı altında direnci değişen piezorezistif bir malzeme olan Velostat® folyo kullanılarak esnek bir mat tasarlanmıştır. Matın yapısı, iki iletken tabaka arasına yerleştirilen piezorezistif folyodan oluşur ve bu yapı sayesinde kuvvet, elektriksel sinyallere dönüştürülmektedir. Matın kalibrasyonu için 2.5 kg’dan 80 kg’a kadar artan ağırlıklar uygulanarak voltaj çıktıları kaydedilmiş, bu verilerle statik yüklemeyi en iyi açıklayan üssel bir model oluşturulmuştur. Dinamik testlerde ise 21 adet squat jump uygulanmış, elde edilen kuvvet-zaman eğrileri geleneksel platformlara benzemekle birlikte referans çizgisi üzerinde düzensiz dalgalanmalar görülmüştür. Bu durumun, yüzey alanındaki değişim ve folyonun bükülmesinden kaynaklandığı düşünülmektedir. Analizler, sıçrama itme kuvveti ile uçuş süresi arasında anlamlı bir ilişki olmadığını göstermiştir (P=0.738). Bu da matın itme kuvvetini güvenilir şekilde ölçemediğini göstermektedir. Ancak, yerle temasın kesildiği ve tekrar başladığı anları tespit edebilmesi sayesinde, uçuş süresine dayalı sıçrama yüksekliği tahmininde kullanılabileceği değerlendirilmektedir.

Destekleyen Kurum

Erciyes Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

TYL2024-13492

Kaynakça

  • Aragón‑Vargas, L. F. (2000). Evaluation of four vertical jump tests: Methodology, reliability, and validity. Measurement in Physical Education and Exercise Science, 4(4), 215–228.
  • Balsalobre‑Fernández, C., Glaister, M., & Lockey, R. A. (2015). The validity and reliability of an iPhone app for measuring vertical jump performance. The Journal of Sports Medicine and Physical Fitness, 55(12), 1574–1579.
  • Bishop, C., Turner, A., & Read, P. (2020). A review of the assessment of inter‑limb asymmetries: A practitioner’s guide. Journal of Strength and Conditioning Research, 34(3), 856–868. https://doi.org/10.1519/JSC.0000000000003039
  • Emamian Shirazi, S. A., Hashemi Oskouei, A., & Hejazi Dinan, P. (2022). Correlation of Vertical Jump Height with Ground Reaction Force and Anthropometric Parameters of Male Athletes. Thrita, 11(2), e131432. https://doi.org/10.5812/thrita-131432
  • Holleczek, T., Schlaefer, A., & Knaebel, H. (2020). Characterization of Piezoresistive Foils (Velostat®) for Force Measurement. Sensors, 20(21), 6061. https://doi.org/10.3390/s20216061
  • Khan, R., & Pletz, J. (2018). A low‑cost, open‑source force plate for biomechanics research. Sensors, 18(12), 4349. https://doi.org/10.3390/s18124349
  • Miller, J. D., Cabarkapa, D., Miller, A. J., Frazer, L. L., Templin, T. N., Eliason, T. D., Garretson, S. K., Fry, A. C., & Berkland, C. J. (2023). Novel 3D Force Sensors for a Cost-Effective 3D Force Plate for Biomechanical Analysis. Sensors, 23(9), 4437. https://doi.org/10.3390/s23094437
  • Salibindla, S., Ripoche, B., Lai, D. T. H., & Maas, S. (2013). Characterization of a new flexible pressure sensor for body sensor networks. Sensors, 13(7), 8963–8980. https://doi.org/10.3390/s130708963
  • Shin, H., & Lee, B. W. (2016). Feasibility study of sitting posture monitoring based on piezoresistive conductive film‑based flexible force sensor. Journal of the Korea Institute of Information and Communication Engineering, 20(2), 427–434.
  • Villa, G., Bonfiglio, A., Galli, M., & Cimolin, V. (2024). Vertical Jump Height Estimation Using Low-Sampling IMU in Countermovement Jumps: A Feasible Alternative to Motion Capture and Force Platforms. Sensors, 24(24), 7877. https://doi.org/10.3390/s24247877
  • Zhang, Y., et al. (2018). Design of a textile‑based flexible sensor array for mapping plantar pressure. Sensors, 18(12), 4195. https://doi.org/10.3390/s18124195
  • Zhao, Z., et al. (2019). Highly sensitive flexible piezoresistive sensor based on a carbon black/PDMS composite for wearable electronics. Sensors and Actuators A: Physical, 296, 111–118. https://doi.org/10.1016/j.sna.2019.06.017
  • Zhong, J., Ma, Z., Li, H., & Liu, S. (2020). Flexible piezoresistive sensor: A review. Science and Technology of Advanced Materials, 21(1), 178–208. https://doi.org/10.1080/14686996.2020.1722745
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Spor Biliminde Biyomekanik
Bölüm Araştırma Makalesi
Yazarlar

İsmail Orkun Özcan 0009-0002-4310-8209

Alpaslan Yılmaz 0000-0002-3563-0403

Proje Numarası TYL2024-13492
Gönderilme Tarihi 7 Ağustos 2025
Kabul Tarihi 3 Ekim 2025
Yayımlanma Tarihi 22 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 3

Kaynak Göster

APA Özcan, İ. O., & Yılmaz, A. (2025). PİEZOREZİSTİF FOLYO KULLANARAK YER TEPKİ KUVVETİ ÖLÇÜMÜNE DAYALI DÜŞÜK MALİYETLİ SIÇRAMA MATI GELİŞTİRİLMESİ. Sivas Cumhuriyet Üniversitesi Spor Bilimleri Dergisi, 6(3), 48-55.