Research Article
BibTex RIS Cite

ERKEK DAYANIKLILIK SPORCULARINDA ARTIRMALI KOŞU TESTİ SIRASINDA β -ALANİN TAKVİYESİNİN KOŞU HIZI, KALP ATIM HIZI VE KAN LAKTAT TEPKİLERİ ÜZERİNE ETKİLERİ

Year 2025, Volume: 6 Issue: 3, 160 - 168, 22.12.2025

Abstract

Bu çalışmanın amacı, erkek dayanıklılık sporcularında artırmalı koşu testi sırasında 28 günlük β-alanin takviyesinin kalp hızı, kan laktat düzeyi ve koşu hızları üzerine etkilerini belirlemektir. 28 erkek dayanıklılık sporcusu (β-alanin grubu (β-Ala) için yaş: 20,13 yıl, boy: 174,88 cm, kilo: 60,64 kg ve Plasebo (PL) grubu için yaş: 19,67 yıl, boy: 175,08 cm, kilo: 62,67 kg) bu araştırmaya katılmak için gönüllü olmuşlardır. Çift kör plasebo kontrollü bir çalışma protokolü kullanılarak, katılımcılar rastgele olarak β-alanin (β-Ala, n=16) veya plasebo grubuna (PL, n=12) ayrıldılar. β-Ala grubuna 28 gün boyunca günde 6 g (6x1 g tablet) β-alanin takviyesi verilirken, PL grubuna β-Ala grubu ile aynı sıklıkta ve miktarda dekstroz takviyesi yapıldı. Takviye periyodu öncesi ve sonrasında, deneklerin kan laktat ve kalp atım hızı profilini tanımlamak için katılımcılara artırmalı koşu bandı testi uygulandı. Takviye öncesi ve sonrası Laktat eşiği, laktat eşiğindeki kalp atım hızı, koşu hızı ve 2, 4, 6, 8 mmol.l-1 kan laktatına karşılık gelen kalp atım hızları belirlendi. Ön test ve test sonrası laktat eşiği, laktat eşiğine denk gelen kalp atım hızı, koşu hızı ve 2, 4, 6, 8 mmol.l-1 kan laktatına karşılık gelen kalp hızı skorları arasındaki farklılıkları tanımlamak için iki yönlü tekrarlayan ölçümlerde varyans analizi (ANOVA) yapıldı. ANOVA testi sonrası fark bulunması durumunda β-Ala ve PL grupları için ön test ve son test puanlarını belirlemek amacıyla basit ana etki analizi uygulandı. Bu çalışmadan elde edilen sonuçlar, 28 günlük β-alanin takviyesinin laktat eşiğine denk gelen koşu hızı üzerinde önemli bir etkiye sahip olduğunu (β-Ala grubu için 16,38 ± 1,02 km/sa'den 17,50 ± 1,55 km/sa'ye artış) gösterdi (P < 0,05). β-Ala grubunda β-alanin takviyesinden sonra D-max yöntemine göre laktat eşiğinde küçük bir azalma oldu, ancak bu fark istatistiksel olarak anlamlı değildi (P > 0,05). β-alanin takviyesinden sonra laktat eşiğine denk gelen kalp atım hızlarında önemli bir artış oldu (P < 0,05). Basit ana etki analizi, β-ala grubunda 2, 4, 6 ve 8 mmol.l-1 kan laktat konsantrasyonlarına karşılık gelen koşu hızının, başlangıç değerlerine kıyasla önemli ölçüde arttığını göstermiştir (p<0,05). Sonuç olarak; 28 gün boyunca günlük 6 gram β-alanin takviyesinin, laktat eşiğinde ve laktat eşiğin altında ve üstünde yapılan koşularda koşu hızını artırdığını ve dayanıklılık sporcularının anaerobik eşikteki kan laktat seviyelerini azalttığını söyleyebiliriz.

Supporting Institution

Kütahya Dumlupınar Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

# 2020 - 11.

References

  • Artioli, G.G., Gualano, B., Smith, A., Stout, J., & Junior A.H.L. (2010). The role of β-alanine supplementation on muscle carnosine and exercise performance. Medicine and Science in Sports Exercise, 42(6), 1162-1173. https://doi.org/10.1249/MSS.0b013e3181c74e38
  • Batrukova, M.A., & Rubtsov, A.M. (1997). Histidine-containing dipeptides as endogenous regulators of the activity of sarcoplasmic reticulum Ca-release channels. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1324(1), 142-150. https://doi.org/10.1016/S0005-2736(96)00216-7
  • Begum, G., Cunliffe, A., & Leveritt, M. (2005). Physiological role of carnosine in contracting muscle. International Journal Of Sport Nutrition And Exercise Metabolism, 15(5), 493-514. https://doi.org/10.1123/ijsnem.15.5.493g/10.1123/ijsnem.15.5.493
  • Bex, T., Chung, W., Baguet, A., Stegen, S., Stautemas, J., Achten, E., & Derave, W. (2014). Muscle carnosine loading by beta-alanine supplementation is more pronounced in trained vs. untrained muscles. Journal of Applied Physiology, 116(2), 204-209.https://doi.org/10.1152/japplphysiol.01033.2013
  • Boldyrev, A.A., Koldobski, A., Kurella, E., Maltseva, V., & Stvolinski, S. (1993). Natural histidine-containing dipeptide carnosine as a potent hydrophilic antioxidant with membrane stabilizing function. Molecular and Chemical Neuropathology, 19(1), 185-192. https://doi.org/10.1007/BF03160178
  • Cheng, B., Kuipers, H., Snyder, A. C., Keizer, H. A., Jeukendrup, A., & Hesselink, M. (1992). A new approach for the determination of ventilatory and lactate thresholds. International Journal of Sports Medicine, 13(07), 518-522. https://doi.org/10.1055/s-2007-1021309
  • Culbertson J, Kreider, R. B., Greenwood, M., & Cooke, M. (2010) Effects of beta-alanine on muscle carnosine and exercise performance: a review of the current literature. Nutrients, 2(1), 75-98.
  • Derave, W., Ozdemir, M.S., Harris, R.C., Pottier, A., Reyngoudt, H., Koppo, K., Wise, J.A., & Achten, E. (2007). Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. Journal of Applied Physiology, 103(5), 1736-1743. https://doi.org/10.1152/japplphysiol.00397.2007
  • de Salles Painelli, V., Roschel, H., De Jesus, F., Sale, C., Harris, R.C., Solis, M.Y., Benatti, F.B., Gualano, B., Lancha, A.H., & Artioli, G.G. (2013). The ergogenic effect of beta-alanine combined with sodium bicarbonate on high-intensity swimming performance. Applied Physiology, Nutrition, and Metabolism, 38(5), 525-532. https://doi.org/10.1139/apnm-2012-0286
  • Everaert, I., Mooyaart, A., Baguet, A., Zutinic, A., Baelde, H., Achten, E., Taes, Y., & Derave, W. (2011). Vegetarianism, female gender and increasing age, but not CNDP1 genotype, are associated with reduced muscle carnosine levels in humans. Amino Acids, 40(4), 1221-1229. https://doi.org/10.1007/s00726-010-0749-2
  • George, K.P., & MacLaren, D.P.M. (1988). The effect of induced alkalosis and acidosis on endurance running at an intensity corresponding to 4 mM blood lactate. Ergonomics, 31(11), 1639-1645. https://doi.org/10.1080/00140138808966813
  • Harris, R.C., Marlin, D.J., Dunnett, M., Snow, D.H., & Hultman, E. (1990). Muscle buffering capacity and dipeptide content in the thoroughbred horse, greyhound dog and man. Comparative Biochemistry and Physiology. A, Comparative Physiology, 97(2), 249-251. https://doi.org/10.1016/0300-9629(90)90180-z
  • Harris, R.C., Dunnett, M., & Greenhaff, P.L. (1998). Carnosine and taurine contents in individual fibres of human vastus lateralis muscle. Journal of Sports Sciences, 16(7), 639-643. https://doi.org/10.1080/026404198366443
  • Harris, R.C., Tallon, M.J., Dunnett, M., Boobis, L., Coakley, J., Kim, H.J., Fallowfield, J.L., Hill, C.A., Sale, C., & Wise. J.A. (2006). The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids, 30(3), 279-289. https://doi.org/10.1007/s00726-006-0299-9
  • Hill, C.A., Harris, R.C., Kim, H.J., Harris, B.D., Sale, C., Boobis, L.H., Kim, C.K., & Wise J.A. (2007). Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids, 32(2), 225–233. https://doi.org/10.1007/s00726-006-0364-4
  • Hipkiss, A. R. (2000). Carnosine and protein carbonyl groups: a possible relationship. Biochemistry, 65(7), 771-778. https://doi.org/10.1088/1361-6498/ab7730
  • Hobson, R. M., Harris, R. C., Martin, D., Smith, P., Macklin, B., Gualano, B., & Sale, C. (2013). Effect of beta-alanine with and without sodium bicarbonate on 2,000-m rowing performance. International Journal Of Sport Nutrition And Exercise Metabolism, 23(5), 480-487. https://doi.org/10.1123/ijsnem.23.5.480https://doi.org/10.1123/ijsnem.23.5.480
  • Jordan, T., Lukaszuk, J., Misic, M., & Umoren, J. (2010). Effect of beta-alanine supplementation on the onset of blood lactate accumulation (OBLA) during treadmill running: Pre/post 2 treatment experimental design. Journal of the International Society of Sports Nutrition, 7(1), 1-7. https://doi.org/10.1186/1550-2783-7-20
  • Mannion, A. F., Jakeman, P. M., Dunnett, M., Harris, R. C., & Willan, P. L. T. (1992). Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans. European Journal of Applied Physiology And Occupational Physiology, 64(1), 47-50. https://doi.org/10.1007/BF00376439
  • McNaughton, L.R. (1992). Sodium bicarbonate ingestion and its effects on anaerobic exercise of various durations. Journal of Sports Sciences, 10(5), 425-435. https://doi.org/10.1080/02640419208729941
  • Myers, J., & Ashley, E. (1997). Dangerous Curves: A perspective on Exercise, lactate and the anaerobic threshold. Chest, 111, 787-795. https://doi.org/10.1378/chest.111.3.787
  • Parkhouse, W.S., McKenzie, D.C., Hochachka, P.W., & Ovalle, W.K. (1985). Buffering capacity of deproteinized human vastus lateralis muscle. Journal of Applied Physiology, 58(1), 14-17. https://doi.org/10.1152/jappl.1985.58.1.14
  • Penafiel, R., Ruzafa, C., Monserrat, F., & Cremades, A. (2004). Gender-related differences in carnosine, anserine and lysine content of murine skeletal muscle. Amino Acids, 26(1), 53-58. https://doi.org/10.1007/s00726-003-0034-8 Putman, C.T., Jones, N.L., & Heigenhauser, G.J. (2003). Effects of short-term training on plasma acid-base balance during incremental exercise in man. The Journal of Physiology, 550(2), 585-603. https://doi.org/10.1113/jphysiol.2003.039743
  • Sale, C., Saunders, B., & Harrıs, R.C. (2010). Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids, 39(2), 321-333. https://doi.org/10.1007/s00726-009-0443-4
  • Santana, J.O., de Freitas, M.C., Dos Santos, D.M., Rossi, F.E., Lira, F.S., Rosa-Neto, J.C., Caperuto, E.C. (2018). Beta-alanine supplementation improved 10-km running time trial in physically active adults. Frontiers in Physiology, 9, 1105. https://doi.org/10.3389/fphys.2018.01105
  • Sewell, D.A., Harris, R.C., Marlin, D.J., Dunnett, M. (1992). Estimation of the carnosine content of different fibre types in the middle gluteal muscle of the thoroughbred horse. The Journal of Physiology, 455(1), 447-453. https://doi.org/10.1113/jphysiol.1992.sp019310
  • Stephens, T.J., McKenna, M.J., Canny, B.J., Snow, R.J., & McConell, G.K. (2002). Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Medicine and Science in Sports and Exercise. 34(4), 614-621.
  • Stout, J.R., Cramer, J.T., Mielke, M., O'Kroy, J., Torok, D. J., & Zoeller, R. F. (2006). Effects of twenty-eight days of beta-alanine and creatine monohydrate supplementation on the physical working capacity at neuromuscular fatigue threshold. The Journal of Strength & Conditioning Research, 20(4), 928-931.
  • Stout, J.R., Cramer, J.T., Mielke, M., Okroy, J., Torok, D., & Zoeller, R.F. (2007). Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids, 32(3), 381-386.
  • Stout, J.R., Graves, B.S., Smith, A.E., Hartman, M.J., Cramer, J.T., Beck, T.W., & Harris R.C. (2008). The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55–92 years): a double-blind randomized study. Journal of the International Society of Sports Nutrition, 5(1), 21. https://doi.org/10.1186/1550-2783-5-21
  • Suzuki, Y., Ito, O., Mukai, N., Takahashi, H., & Takamatsu K. (2002). High level of skeletal muscle carnosine contributes to the latter half of exercise performance during 30-s maximal cycle ergometer sprinting. The Japanese Journal of Physiology, 52(2), 199-205.
  • Tallon, M.J., Harris, R.C., Boobis, L.H., Fallowfield, J.L., & Wise, J.A. (2005). The carnosine content of vastus lateralis is elevated in resistance-trained bodybuilders. Jornal of Strength and Conitioning Research, 19(4), 725-729.
  • Tobias, G., Benatti, F.B., de Salles Painelli, V., Roschel, H., Gualano, B., Sale, C., Harris, R.C., Lancha, A.H., & Artioli, G. G. (2013). Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance. Amino Acids, 45(2), 309-317.
  • Trexler, E.T., Smith-Ryan, A.E., Stout, J.R., Hoffman, J.R., Wilborn, C.D., Sale, C., Kreider, R.B., Jäger, R., Earnest, C.P., Bannock, L., Campbell, B., Kalman, D., Ziegenfuss, T., & Antonio, J. (2015). International society of sports nutrition position stand: Beta-Alanine. Journal of the International Society of Sports Nutrition, 12(1), 1-14. https://doi.org/10.1186/s12970-015-0090-y
  • Van Thienen, R., Van Proeyen, K., Vanden Eynde, B., Puype, J., Lefere, T., & Hespel P. (2009). Beta-alanine improves sprint performance in endurance cycling. Medicine and Science in Sports and Exercise, 41(4), 898-903. https://doi.org/10.1249/mss.0b013e31818db708
  • Zoeller, R.F., Stout, J.R., O'Kroy, J.A., Torok, D.J., & Mielke, M. (2007). Effects of 28 days of beta-alanine and creatine monohydrate supplementation on aerobic power, ventilatory and lactate thresholds, and time to exhaustion. Amino Acids, 33(3),505-510

EFFECTS OF β-ALANINE INGESTION ON RUNNING SPEED, HEART RATE AND BLOOD LACTATE RESPONSES IN MALE ENDURANCE ATHLETES DURING INCREMENTAL RUNNING TEST*

Year 2025, Volume: 6 Issue: 3, 160 - 168, 22.12.2025

Abstract

The purpose of this study was to determine the effects of 28 day of β-alanine supplementation on heart rate, blood lactate and running speeds in male endurance athletes during incremental running test. 28 male endurance athletes (age: 20,13 yrs, height: 174,88 cm, weight: 60,64 kg for β-alanine (β-Ala) group and age: 19,67 yrs, height: 175,08 cm, weight: 62,67 kg for Plasebo (PL) group) volunteered to participate in this investigation. Using a double-blind placebo controlled study protocol, participants were randomly assigned to either β-alanine (β-Ala, n=16) or placebo group (PL, n=12). While the β-Ala group was ingested 6 g.d-1 (6x1g tablet) of β-alanine supplementation during 28 day, the PL group was supplemented with dextrose in the same frequency as the β-Ala group. Before and after the supplementation period, participants were performed incremental treadmill test to define subject’s blood lactate and heart rate profile. Lactate threshold, heart rate at lactate threshold, running speed and heart rate corresponding to 2, 4, 6, 8 mmol.l-1 blood lactate were determined. A two-way repeated measure analysis of variance (ANOVA) was conducted to define differences between pre-test and post-test lactate threshold, heart rate at lactate threshold, running speed and heart rate corresponding to 2, 4, 6, 8 mmol.l-1 blood lactate scores. In case where the differences were found after the ANOVA test, simple main effect analysis was applied to determine pre-test and post-test scores for β-Ala and PL groups. The results from this study showed that 28 days of β-alanine supplementation had significant effect on running speed (increase from 16,38 ± 1,02 km/h to 17,50 ± 1,55 km/h for β-Ala group) at lactate threshold (P < 0.05). There was a small decrease in lactate threshold according to D-max method for β-Ala group after the β-alanine supplementation, but this difference was not statistically significant (P > 0.05). There was a significant increase in heart rate at lactate threshold after the β-alanine supplementation (P < 0.05). Simple main effect analysis demonstrated that running speed corresponding to 2, 4, 6 and 8 mmol.l-1 blood lactate concentrations in β-ala group improved significantly compared with their baseline value (p<0,05). As a result; we can state that daily 6 gram of β-alanine supplementation for 28 days increase the running speed in runs at the lactate threshold and below and above the anaerobic threshold and decrease blood lactate levels of endurance athletes at the anaerobic threshold.

Supporting Institution

Kütahya Dumlupınar University Scientific Research Projects Coordination Office

Project Number

# 2020 - 11.

References

  • Artioli, G.G., Gualano, B., Smith, A., Stout, J., & Junior A.H.L. (2010). The role of β-alanine supplementation on muscle carnosine and exercise performance. Medicine and Science in Sports Exercise, 42(6), 1162-1173. https://doi.org/10.1249/MSS.0b013e3181c74e38
  • Batrukova, M.A., & Rubtsov, A.M. (1997). Histidine-containing dipeptides as endogenous regulators of the activity of sarcoplasmic reticulum Ca-release channels. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1324(1), 142-150. https://doi.org/10.1016/S0005-2736(96)00216-7
  • Begum, G., Cunliffe, A., & Leveritt, M. (2005). Physiological role of carnosine in contracting muscle. International Journal Of Sport Nutrition And Exercise Metabolism, 15(5), 493-514. https://doi.org/10.1123/ijsnem.15.5.493g/10.1123/ijsnem.15.5.493
  • Bex, T., Chung, W., Baguet, A., Stegen, S., Stautemas, J., Achten, E., & Derave, W. (2014). Muscle carnosine loading by beta-alanine supplementation is more pronounced in trained vs. untrained muscles. Journal of Applied Physiology, 116(2), 204-209.https://doi.org/10.1152/japplphysiol.01033.2013
  • Boldyrev, A.A., Koldobski, A., Kurella, E., Maltseva, V., & Stvolinski, S. (1993). Natural histidine-containing dipeptide carnosine as a potent hydrophilic antioxidant with membrane stabilizing function. Molecular and Chemical Neuropathology, 19(1), 185-192. https://doi.org/10.1007/BF03160178
  • Cheng, B., Kuipers, H., Snyder, A. C., Keizer, H. A., Jeukendrup, A., & Hesselink, M. (1992). A new approach for the determination of ventilatory and lactate thresholds. International Journal of Sports Medicine, 13(07), 518-522. https://doi.org/10.1055/s-2007-1021309
  • Culbertson J, Kreider, R. B., Greenwood, M., & Cooke, M. (2010) Effects of beta-alanine on muscle carnosine and exercise performance: a review of the current literature. Nutrients, 2(1), 75-98.
  • Derave, W., Ozdemir, M.S., Harris, R.C., Pottier, A., Reyngoudt, H., Koppo, K., Wise, J.A., & Achten, E. (2007). Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. Journal of Applied Physiology, 103(5), 1736-1743. https://doi.org/10.1152/japplphysiol.00397.2007
  • de Salles Painelli, V., Roschel, H., De Jesus, F., Sale, C., Harris, R.C., Solis, M.Y., Benatti, F.B., Gualano, B., Lancha, A.H., & Artioli, G.G. (2013). The ergogenic effect of beta-alanine combined with sodium bicarbonate on high-intensity swimming performance. Applied Physiology, Nutrition, and Metabolism, 38(5), 525-532. https://doi.org/10.1139/apnm-2012-0286
  • Everaert, I., Mooyaart, A., Baguet, A., Zutinic, A., Baelde, H., Achten, E., Taes, Y., & Derave, W. (2011). Vegetarianism, female gender and increasing age, but not CNDP1 genotype, are associated with reduced muscle carnosine levels in humans. Amino Acids, 40(4), 1221-1229. https://doi.org/10.1007/s00726-010-0749-2
  • George, K.P., & MacLaren, D.P.M. (1988). The effect of induced alkalosis and acidosis on endurance running at an intensity corresponding to 4 mM blood lactate. Ergonomics, 31(11), 1639-1645. https://doi.org/10.1080/00140138808966813
  • Harris, R.C., Marlin, D.J., Dunnett, M., Snow, D.H., & Hultman, E. (1990). Muscle buffering capacity and dipeptide content in the thoroughbred horse, greyhound dog and man. Comparative Biochemistry and Physiology. A, Comparative Physiology, 97(2), 249-251. https://doi.org/10.1016/0300-9629(90)90180-z
  • Harris, R.C., Dunnett, M., & Greenhaff, P.L. (1998). Carnosine and taurine contents in individual fibres of human vastus lateralis muscle. Journal of Sports Sciences, 16(7), 639-643. https://doi.org/10.1080/026404198366443
  • Harris, R.C., Tallon, M.J., Dunnett, M., Boobis, L., Coakley, J., Kim, H.J., Fallowfield, J.L., Hill, C.A., Sale, C., & Wise. J.A. (2006). The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids, 30(3), 279-289. https://doi.org/10.1007/s00726-006-0299-9
  • Hill, C.A., Harris, R.C., Kim, H.J., Harris, B.D., Sale, C., Boobis, L.H., Kim, C.K., & Wise J.A. (2007). Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids, 32(2), 225–233. https://doi.org/10.1007/s00726-006-0364-4
  • Hipkiss, A. R. (2000). Carnosine and protein carbonyl groups: a possible relationship. Biochemistry, 65(7), 771-778. https://doi.org/10.1088/1361-6498/ab7730
  • Hobson, R. M., Harris, R. C., Martin, D., Smith, P., Macklin, B., Gualano, B., & Sale, C. (2013). Effect of beta-alanine with and without sodium bicarbonate on 2,000-m rowing performance. International Journal Of Sport Nutrition And Exercise Metabolism, 23(5), 480-487. https://doi.org/10.1123/ijsnem.23.5.480https://doi.org/10.1123/ijsnem.23.5.480
  • Jordan, T., Lukaszuk, J., Misic, M., & Umoren, J. (2010). Effect of beta-alanine supplementation on the onset of blood lactate accumulation (OBLA) during treadmill running: Pre/post 2 treatment experimental design. Journal of the International Society of Sports Nutrition, 7(1), 1-7. https://doi.org/10.1186/1550-2783-7-20
  • Mannion, A. F., Jakeman, P. M., Dunnett, M., Harris, R. C., & Willan, P. L. T. (1992). Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans. European Journal of Applied Physiology And Occupational Physiology, 64(1), 47-50. https://doi.org/10.1007/BF00376439
  • McNaughton, L.R. (1992). Sodium bicarbonate ingestion and its effects on anaerobic exercise of various durations. Journal of Sports Sciences, 10(5), 425-435. https://doi.org/10.1080/02640419208729941
  • Myers, J., & Ashley, E. (1997). Dangerous Curves: A perspective on Exercise, lactate and the anaerobic threshold. Chest, 111, 787-795. https://doi.org/10.1378/chest.111.3.787
  • Parkhouse, W.S., McKenzie, D.C., Hochachka, P.W., & Ovalle, W.K. (1985). Buffering capacity of deproteinized human vastus lateralis muscle. Journal of Applied Physiology, 58(1), 14-17. https://doi.org/10.1152/jappl.1985.58.1.14
  • Penafiel, R., Ruzafa, C., Monserrat, F., & Cremades, A. (2004). Gender-related differences in carnosine, anserine and lysine content of murine skeletal muscle. Amino Acids, 26(1), 53-58. https://doi.org/10.1007/s00726-003-0034-8 Putman, C.T., Jones, N.L., & Heigenhauser, G.J. (2003). Effects of short-term training on plasma acid-base balance during incremental exercise in man. The Journal of Physiology, 550(2), 585-603. https://doi.org/10.1113/jphysiol.2003.039743
  • Sale, C., Saunders, B., & Harrıs, R.C. (2010). Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids, 39(2), 321-333. https://doi.org/10.1007/s00726-009-0443-4
  • Santana, J.O., de Freitas, M.C., Dos Santos, D.M., Rossi, F.E., Lira, F.S., Rosa-Neto, J.C., Caperuto, E.C. (2018). Beta-alanine supplementation improved 10-km running time trial in physically active adults. Frontiers in Physiology, 9, 1105. https://doi.org/10.3389/fphys.2018.01105
  • Sewell, D.A., Harris, R.C., Marlin, D.J., Dunnett, M. (1992). Estimation of the carnosine content of different fibre types in the middle gluteal muscle of the thoroughbred horse. The Journal of Physiology, 455(1), 447-453. https://doi.org/10.1113/jphysiol.1992.sp019310
  • Stephens, T.J., McKenna, M.J., Canny, B.J., Snow, R.J., & McConell, G.K. (2002). Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Medicine and Science in Sports and Exercise. 34(4), 614-621.
  • Stout, J.R., Cramer, J.T., Mielke, M., O'Kroy, J., Torok, D. J., & Zoeller, R. F. (2006). Effects of twenty-eight days of beta-alanine and creatine monohydrate supplementation on the physical working capacity at neuromuscular fatigue threshold. The Journal of Strength & Conditioning Research, 20(4), 928-931.
  • Stout, J.R., Cramer, J.T., Mielke, M., Okroy, J., Torok, D., & Zoeller, R.F. (2007). Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids, 32(3), 381-386.
  • Stout, J.R., Graves, B.S., Smith, A.E., Hartman, M.J., Cramer, J.T., Beck, T.W., & Harris R.C. (2008). The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55–92 years): a double-blind randomized study. Journal of the International Society of Sports Nutrition, 5(1), 21. https://doi.org/10.1186/1550-2783-5-21
  • Suzuki, Y., Ito, O., Mukai, N., Takahashi, H., & Takamatsu K. (2002). High level of skeletal muscle carnosine contributes to the latter half of exercise performance during 30-s maximal cycle ergometer sprinting. The Japanese Journal of Physiology, 52(2), 199-205.
  • Tallon, M.J., Harris, R.C., Boobis, L.H., Fallowfield, J.L., & Wise, J.A. (2005). The carnosine content of vastus lateralis is elevated in resistance-trained bodybuilders. Jornal of Strength and Conitioning Research, 19(4), 725-729.
  • Tobias, G., Benatti, F.B., de Salles Painelli, V., Roschel, H., Gualano, B., Sale, C., Harris, R.C., Lancha, A.H., & Artioli, G. G. (2013). Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance. Amino Acids, 45(2), 309-317.
  • Trexler, E.T., Smith-Ryan, A.E., Stout, J.R., Hoffman, J.R., Wilborn, C.D., Sale, C., Kreider, R.B., Jäger, R., Earnest, C.P., Bannock, L., Campbell, B., Kalman, D., Ziegenfuss, T., & Antonio, J. (2015). International society of sports nutrition position stand: Beta-Alanine. Journal of the International Society of Sports Nutrition, 12(1), 1-14. https://doi.org/10.1186/s12970-015-0090-y
  • Van Thienen, R., Van Proeyen, K., Vanden Eynde, B., Puype, J., Lefere, T., & Hespel P. (2009). Beta-alanine improves sprint performance in endurance cycling. Medicine and Science in Sports and Exercise, 41(4), 898-903. https://doi.org/10.1249/mss.0b013e31818db708
  • Zoeller, R.F., Stout, J.R., O'Kroy, J.A., Torok, D.J., & Mielke, M. (2007). Effects of 28 days of beta-alanine and creatine monohydrate supplementation on aerobic power, ventilatory and lactate thresholds, and time to exhaustion. Amino Acids, 33(3),505-510
There are 36 citations in total.

Details

Primary Language English
Subjects Sports Training, Sports Nutrition
Journal Section Research Article
Authors

Mert Kayhan 0000-0001-5850-3872

Halit Harmancı 0000-0002-7176-6607

Filiz Özyiğit 0000-0002-0062-4281

Project Number # 2020 - 11.
Submission Date September 18, 2025
Acceptance Date November 18, 2025
Publication Date December 22, 2025
Published in Issue Year 2025 Volume: 6 Issue: 3

Cite

APA Kayhan, M., Harmancı, H., & Özyiğit, F. (2025). EFFECTS OF β-ALANINE INGESTION ON RUNNING SPEED, HEART RATE AND BLOOD LACTATE RESPONSES IN MALE ENDURANCE ATHLETES DURING INCREMENTAL RUNNING TEST*. Sivas Cumhuriyet Üniversitesi Spor Bilimleri Dergisi, 6(3), 160-168.

s