Research Article
BibTex RIS Cite

The anaerobic power output in the Wingate test: Effect of gender, load, and duration

Year 2022, Volume: 33 Issue: 4, 227 - 239, 10.01.2023
https://doi.org/10.17644/sbd.1200575

Abstract

The study aimed to investigate the effects of the interactions among the test durations, loads and gender on the anaerobic power in the Wingate anaerobic test (WAnT). Thirty-three moderately active young adults (age; 20.9±1.8 years), 14of whom are women, participated in the study. The measurements were performed on seven separate visits at least two days apart. On the first visit, body composition measurements and a familiarization process were performed. In the next six visits, 15-s, 20-s and 30-s WAnT at both 8.5% of body mass and 11% of lean body mass were performed randomly. The effects of gender on power output changes in WAnT were examined with split-plot ANOVA. The significance level was set at p<0.05. The load of 11% of lean body mass provided greater peak power compared with a load of 8.5% of body weight (p= 0.03). The increases in mean power at the short duration WAnT were higher in men than in women (p=0.01). In 15-s and 20-s WAnT, high mean power outputs at a load of lean body mass were obtained in men, while the load did not affect the mean power in women (p=0.03). The short-duration WAnT versions led to lower heart rate (HR) and reduced rating of perceived exertion (RPE) (p<0.01). The load did not affect the RPE (p>0.05). The findings indicate that gender differences should be considered regarding the duration of the test and optimal load for WAnT.

References

  • 1. Attia. A., Hachana, Y., Chaabène, H., Gaddour, A., Neji, Z., Shephard, R. J., ve Chelly, M. S. (2014). Reliability and validity of a 20-s alternative to the Wingate anaerobic test in team sport male athletes. Plos One, 9(12), Article e114444.
  • 2. Bar-Or, O. (1987). The Wingate anaerobic test an update on methodology, reliability and validity. Sports Med, 4(6), 381-394. DOI: 10.2165/00007256-198704060-00001
  • 3. Bediz, C. S., Gökbel, H., Kara, M., Uçok, K., Cikrikçi, E., ve Ergene, N. (1998). Comparison of the aerobic contributions to Wingate anaerobic tests performed withtwo different loads. J Sports Med Phys Fitness. 1998;38(1):30-34.
  • 4. Beneke, R., Pollmann, C., Bleif, I., Leithäuser, RM., ve Hütler, M. (2002). How anaerobic is the Wingate anaerobic test for humans. Eur J Appl Physiol, 87(4-5), 388-92. DOI: 10.1007/s00421-002-0622-4
  • 5. Bradley, A. L., ve Ball, T. E. (1992). The Wingate test: effect of load on the power outputs of female athletes and nonathletes. J Strength Cond Res, 6(4), 193-199. DOI:10.1519/1533-4287
  • 6. Calbet, J. A., De Paz, J. A., Garatachea, N., Cabeza de Vaca, S., ve Chavarren, J. (2003). Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. J Appl Physiol (1985), 94(2), 668-76. DOI: https://doi.org/10.1007/BF00601809
  • 7. Castañeda-Babarro, A. (2021). The Wingate anaerobic test, a narrative review of the protocol variables that affect the results obtained. Appl Sci, 11(16):7417. https://doi.org/10.3390/app11167417
  • 8. Cohen, J. (1998). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
  • 9. Dotan, R., ve Bar-Or, O. (1983). Load optimization for the Wingate anaerobic test. Eur J Appl Physiol Occup Physiol, 51(3), 409-417. DOI: 10.1007/BF00429077
  • 10. Durnin, J. V., ve Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. British Journal of Nutrition, 32(1), 77-97. DOI: https://doi.org/10.1079/BJN19740060
  • 11. Esbjörnsson, M., Sylvén, C., Holm, I., ve Jansson, E. (1993). Fast twitch fibres may predict anaerobic performance in both females and males. Int J Sports Med, 14(5), 257-63. DOI: 10.1055/s-2007-1021174
  • 12. Galán-Rioja, M. Á., González-Mohíno, F., Sanders, D., Mellado, J., ve González-Ravé, J. M. (2020). Effects of body weight vs. lean body mass on Wingate anaerobic test performance in endurance athletes. Int J Sports Med, 41(08), 545-551. DOI: 10.1055/a-1114-6206
  • 13. Ghasemi, A., ve Zahediasl, S. (2012). Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab, 10(2), 486. doi: 10.5812/ijem.3505
  • 14. Gökbel, H., Çalışkan, S., Özbay, Y., ve Bediz, C. Ş. (1993). Farklı yüklerle yapılan Wingate testlerinde güç değerleri. Spor Bilimleri Dergisi, 4(4): 10-16.
  • 15. Granier, P., Mercier, B., Mercier, J., Anselme, F., ve Préfaut, C. (1995). Aerobic and anaerobic contribution to Wingate test performance in sprint and middle-distance runners. Eur J Appl Physiol Occup Physiol, 70(1):58-65. DOI: https://doi.org/10.1007/BF00601809
  • 16. Gratas-Delamarche, A., Le Cam, R., Delamarche, P., Monnier, M., ve Koubi, H. (1994). Lactate and catecholamine responses in male and female sprinters during a Wingate test. Eur J Appl Physiol Occup Physiol, 68(4), 362-6. DOI: 10.1007/BF00571458
  • 17. Hachana, Y., Attia, A., Nassib, S., Shephard, R. J., ve Chelly, M. S. (2012). Test-retest reliability, criterion-related validity, and minimal detectable change of score on an abbreviated Wingate test for field sport participants. J Strength Cond Res, 26(5), 1324-1330. DOI: 10.1519/JSC.0b013e3182305485
  • 18. Hernández-Belmonte, A., Buendía-Romero, Á., Martínez-Cava, A., Courel-Ibáñez, J., Mora-Rodríguez, R., ve Pallarés, J. G. (2020). Wingate test, when time and overdue fatigue matter: validity and sensitivity of two time-shortened versions. Applied Sciences,10(22), 8002. DOI: 10.1519/JSC.0b013e31816a906e
  • 19. Hill, D., ve Smith, J. C. (1993). Gender difference in anaerobic capacity: role of aerobic contribution. Br J Sports Med, 27(1), 45-48. DOI: 10.1136/bjsm.27.1.45
  • 20. Jaafar, H., Rouis, M., Attiogbé, E., Vandewalle, H., ve Driss, T. (2016). A comparative study between the Wingate and force-velocity anaerobic cycling tests: effect of physical fitness. Int J Sports Physiol Perform, 11(1), 48-54. DOI: 10.1123/ijspp.2015-0063
  • 21. Jaafar, H., Rouis, M., Coudrat, L., Attiogbé, E., Vandewalle, H., ve Driss, T. (2014). Effects of load on Wingate test performances and reliability. J Strength Cond Res, 28(12), 3462-3468. DOI: DOI: 10.1519/JSC.0000000000000575
  • 22. Jacobs, I., Bar-Or, O., Karlsson, J., Dotan, R., Tesch, P., Kaiser, P., ve Inbar, O. (1982) Changes in muscle metabolites in females with 30-s exhaustive exercise. Med Sci Sports Exerc, 14(6), 457-460. DOI: 10.1249/00005768-198206000-00009
  • 23. Koşar, Ş. N., ve Işler, A. K. (2004). Üniversite öğrencilerinin wingate anaerobik performans profili ve cinsiyet farklılıkları. Spor Bilimleri Dergisi, 15 (1), 25-38. https://dergipark.org.tr/tr/pub/sbd/issue/16408/171485
  • 24. Krüger, R. L., Peyrard, A., Domenico, H., Rupp, T., Millet, G. Y., ve Samozino, P. (2020). Optimal load for a torque-velocity relationship test during cycling. Eur J Appl Physiol, 120(11), 2455-2466. DOI: 10.1007/s00421-020-04454-x
  • 25. Laurent, C. M., Meyers, M. C., Robinson, C. A., ve Green, J. M. (2007). Cross-validation of the 20- versus 30-s Wingate anaerobic test. Eur J Appl Physiol, 100(6), 645-51. DOI: 10.1007/s00421-007-0454-3
  • 26. Maud, P. J., ve Shultz, B. B. (1986) Gender comparisons in anaerobic power and anaerobic capacity tests. Br J Sports Med, 20(2):5 1-4. doi: 10.1136/bjsm.20.2.51
  • 27. Medbø, J. I., ve Tabata, I. (1993) Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol, 75(4),1654-60. DOI: 10.1152/jappl.1993.75.4.1654
  • 28. Murphy, M. M., Patton, J. F., ve Frederick, F. A. (1986). Comparative anaerobic power of men and women. Aviat Space Environ Med, 57(7), 636-41.
  • 29. Özkaya, Ö (2014). Paradox in currently available Wingate all-out test indices in milliseconds versus traditionally calculated 5 seconds means. Spor Bilimleri Dergisi, 25(2), 104-107.
  • 30. Pazin, N., Bozic, P., Bobana, B., Nedeljkovic, A., ve Jaric, S. (2011). Optimum loading for maximizing muscle power output: the effect of training history. Eur J Appl Physiol,111(9), 2123-2130. DOI: 10.1007/s00421-011-1840-4
  • 31. Perez-Gomez, J., Rodriguez, G. V., Ara, I., Olmedillas, H., Chavarren, J., González-Henriquez, J. J., Dorado, C.., ve Calbet J. A. L. (2008). Role of muscle mass on sprint performance: gender differences. Eur J Appl Physiol, 102(6), 685-694. DOI: 10.1007/s00421-007-0648-8
  • 32. Serresse, O., Lortie, G., Bouchard, C., ve Boulay, M. R. (1988). Estimation of the contribution of the various energy systems during maximal work of short duration. Int J Sports Med, 9(6), 456-60. DOI: 10.1055/s-2007-1025051
  • 33. Silveira-Rodrigues, J. G., Maia-Lima, A., Almeida, P. A. S., França, B. M. S., Campos, B. T., Penna, E., ve Prado, L. S. (2021). Optimal load setting provides higher peak power and fatigue index with a similar mean power during 30-s Wingate anaerobic test in physically active men. Fatigue Biomedicine Health Behavior, 9(4): 175-188. https://doi.org/10.1080/21641846.2021.1989943
  • 34. Smith, J. C., ve Hill, D. W. (1991). Contribution of energy systems during a Wingate power test. Br J Sports Med, 25(4), 196-199. doi: 10.1136/bjsm.25.4.196
  • 35. Stickley, C. D., Hetzler, R. K., ve Kimura, I. F. (2008) Prediction of anaerobic power values from an abbreviated WAnT protocol. J Strength Cond Res, 22(3), 958-65. DOI: 10.1519/JSC.0b013e31816a906e
  • 36. Üçok, K., Gökbel, H., ve Okudan, N. (2005) The Load Of The Wingate Test: According To The Body Weight Or Lean Body Mass? Eur J Gen Med, 2(1), 10-13. https://doi.org/10.29333/ejgm/82259
  • 37. Üçok, K., Mollaoğlu, H., Demirel, R., ve Akgün, L. (2006). Wingate testinde vücut ağırlığına ve yağsız vücut ağırlığına göre belirlenen yüklerle elde edilen güç çıktılarının karşılaştırılması [Comparison of power outputs of wingate tests applied with loads determined from body weight and lean body mass]. Kocatepe Tıp Dergisi, 7, 31-34. https://dergipark.org.tr/tr/pub/kocatepetip/issue/17421/182437
  • 38. Vandewalle, H., Pérès, G., ve Monod, H. (1987) Standard anaerobic exercise tests. Sports Med, 4(4):268-89. DOI: 10.2165/00007256-198704040-00004
  • 39. Vargas, NT., Robergs, R. A., ve Klopp, D. M. (2015). Optimal loads for a 30-s maximal power cycle ergometer test using a stationary start. Eur J Appl Physiol, 115(5), 1087-1094. DOI: 10.1007/s00421-014-3090-8
  • 40. Weber, C. L., Chia, M., ve Inbar, O. (2006). Gender differences in anaerobic power of the arms and legs--a scaling issue. Med Sci Sports Exerc, 38(1), 129-37. DOI: 10.1249/01.mss.0000179902.31527.2c
  • 41. Whaley, M. H., Brubaker, P. H., Otto, R. M., ve Armstrong, L. E. (2006). ACSM's guidelines for exercise testing and prescription: Lippincott Williams & Wilkins.

Wingate testinde anaerobik güç çıktıları: Cinsiyetin, yükün ve sürenin etkisi

Year 2022, Volume: 33 Issue: 4, 227 - 239, 10.01.2023
https://doi.org/10.17644/sbd.1200575

Abstract

Araştırmada Wingate anaerobik testinde (WAnT) yükün, test süresinin ve cinsiyetin güç çıktılarına etkileri incelenmiştir. Araştırmaya, 14’ü kadın 33 orta düzeyde aktif genç yetişkin (yaş; 20.9±1.8 yıl) katılmıştır. Katılımcılar laboratuvarı 7 kez ziyaret etmiştir. İlk ziyarette vücut kompozisyonu ölçümleri ve adaptasyon çalışmaları yapılmıştır. Sonraki 6 ayrı ziyarette ise vücut ağırlıklarının % 8,5’ine ve yağsız vücut ağırlığının %11’ine göre verilen yüklerde en az 2 gün arayla sıra takip etmeksizin 15 sn, 20 sn ve 30 sn WAnT uygulamaları yapılmıştır. Cinsiyetin WAnT güç çıktılarına etkisi split-plot ANOVA ile incelenmiştir. Anlamlılık düzeyi p<0.05 olarak kabul edilmiştir. Erkeklerin; zirve, ortalama ve minimum güç çıktıları kadınlarınkinden yüksektir (p<0.01). Zirve güç, vücut ağırlığına göre verilen yükle kıyaslandığında yağsız vücut ağırlığına göre verilen yükte daha yüksektir (p=0.03). Kısa test sürelerinde ortalama güçteki artış erkeklerde kadınlara göre yüksektir (p=0.01). Yağsız vücut ağırlığına göre verilen yük erkeklerde 15 sn ve 20 sn WAnT uygulamalarında daha yüksek ortalama güç çıktıları ortaya çıkarken, kadınlarda yükün etkisi bulunmamıştır (p=0.03). Kısa test sürelerinde kalp atım hızı azalırken, algılanan zorluk derecesi (AZD) puanları da düşmüştür (p<0.01). Yük faktörü AZD’yi etkilememiştir (p>0.05). Araştırma bulguları, WAnT’la ilgili süre ve yük önerilerinde cinsiyet faktörünün göz önünde bulundurulması gerektiğini göstermektedir.

References

  • 1. Attia. A., Hachana, Y., Chaabène, H., Gaddour, A., Neji, Z., Shephard, R. J., ve Chelly, M. S. (2014). Reliability and validity of a 20-s alternative to the Wingate anaerobic test in team sport male athletes. Plos One, 9(12), Article e114444.
  • 2. Bar-Or, O. (1987). The Wingate anaerobic test an update on methodology, reliability and validity. Sports Med, 4(6), 381-394. DOI: 10.2165/00007256-198704060-00001
  • 3. Bediz, C. S., Gökbel, H., Kara, M., Uçok, K., Cikrikçi, E., ve Ergene, N. (1998). Comparison of the aerobic contributions to Wingate anaerobic tests performed withtwo different loads. J Sports Med Phys Fitness. 1998;38(1):30-34.
  • 4. Beneke, R., Pollmann, C., Bleif, I., Leithäuser, RM., ve Hütler, M. (2002). How anaerobic is the Wingate anaerobic test for humans. Eur J Appl Physiol, 87(4-5), 388-92. DOI: 10.1007/s00421-002-0622-4
  • 5. Bradley, A. L., ve Ball, T. E. (1992). The Wingate test: effect of load on the power outputs of female athletes and nonathletes. J Strength Cond Res, 6(4), 193-199. DOI:10.1519/1533-4287
  • 6. Calbet, J. A., De Paz, J. A., Garatachea, N., Cabeza de Vaca, S., ve Chavarren, J. (2003). Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. J Appl Physiol (1985), 94(2), 668-76. DOI: https://doi.org/10.1007/BF00601809
  • 7. Castañeda-Babarro, A. (2021). The Wingate anaerobic test, a narrative review of the protocol variables that affect the results obtained. Appl Sci, 11(16):7417. https://doi.org/10.3390/app11167417
  • 8. Cohen, J. (1998). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
  • 9. Dotan, R., ve Bar-Or, O. (1983). Load optimization for the Wingate anaerobic test. Eur J Appl Physiol Occup Physiol, 51(3), 409-417. DOI: 10.1007/BF00429077
  • 10. Durnin, J. V., ve Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. British Journal of Nutrition, 32(1), 77-97. DOI: https://doi.org/10.1079/BJN19740060
  • 11. Esbjörnsson, M., Sylvén, C., Holm, I., ve Jansson, E. (1993). Fast twitch fibres may predict anaerobic performance in both females and males. Int J Sports Med, 14(5), 257-63. DOI: 10.1055/s-2007-1021174
  • 12. Galán-Rioja, M. Á., González-Mohíno, F., Sanders, D., Mellado, J., ve González-Ravé, J. M. (2020). Effects of body weight vs. lean body mass on Wingate anaerobic test performance in endurance athletes. Int J Sports Med, 41(08), 545-551. DOI: 10.1055/a-1114-6206
  • 13. Ghasemi, A., ve Zahediasl, S. (2012). Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab, 10(2), 486. doi: 10.5812/ijem.3505
  • 14. Gökbel, H., Çalışkan, S., Özbay, Y., ve Bediz, C. Ş. (1993). Farklı yüklerle yapılan Wingate testlerinde güç değerleri. Spor Bilimleri Dergisi, 4(4): 10-16.
  • 15. Granier, P., Mercier, B., Mercier, J., Anselme, F., ve Préfaut, C. (1995). Aerobic and anaerobic contribution to Wingate test performance in sprint and middle-distance runners. Eur J Appl Physiol Occup Physiol, 70(1):58-65. DOI: https://doi.org/10.1007/BF00601809
  • 16. Gratas-Delamarche, A., Le Cam, R., Delamarche, P., Monnier, M., ve Koubi, H. (1994). Lactate and catecholamine responses in male and female sprinters during a Wingate test. Eur J Appl Physiol Occup Physiol, 68(4), 362-6. DOI: 10.1007/BF00571458
  • 17. Hachana, Y., Attia, A., Nassib, S., Shephard, R. J., ve Chelly, M. S. (2012). Test-retest reliability, criterion-related validity, and minimal detectable change of score on an abbreviated Wingate test for field sport participants. J Strength Cond Res, 26(5), 1324-1330. DOI: 10.1519/JSC.0b013e3182305485
  • 18. Hernández-Belmonte, A., Buendía-Romero, Á., Martínez-Cava, A., Courel-Ibáñez, J., Mora-Rodríguez, R., ve Pallarés, J. G. (2020). Wingate test, when time and overdue fatigue matter: validity and sensitivity of two time-shortened versions. Applied Sciences,10(22), 8002. DOI: 10.1519/JSC.0b013e31816a906e
  • 19. Hill, D., ve Smith, J. C. (1993). Gender difference in anaerobic capacity: role of aerobic contribution. Br J Sports Med, 27(1), 45-48. DOI: 10.1136/bjsm.27.1.45
  • 20. Jaafar, H., Rouis, M., Attiogbé, E., Vandewalle, H., ve Driss, T. (2016). A comparative study between the Wingate and force-velocity anaerobic cycling tests: effect of physical fitness. Int J Sports Physiol Perform, 11(1), 48-54. DOI: 10.1123/ijspp.2015-0063
  • 21. Jaafar, H., Rouis, M., Coudrat, L., Attiogbé, E., Vandewalle, H., ve Driss, T. (2014). Effects of load on Wingate test performances and reliability. J Strength Cond Res, 28(12), 3462-3468. DOI: DOI: 10.1519/JSC.0000000000000575
  • 22. Jacobs, I., Bar-Or, O., Karlsson, J., Dotan, R., Tesch, P., Kaiser, P., ve Inbar, O. (1982) Changes in muscle metabolites in females with 30-s exhaustive exercise. Med Sci Sports Exerc, 14(6), 457-460. DOI: 10.1249/00005768-198206000-00009
  • 23. Koşar, Ş. N., ve Işler, A. K. (2004). Üniversite öğrencilerinin wingate anaerobik performans profili ve cinsiyet farklılıkları. Spor Bilimleri Dergisi, 15 (1), 25-38. https://dergipark.org.tr/tr/pub/sbd/issue/16408/171485
  • 24. Krüger, R. L., Peyrard, A., Domenico, H., Rupp, T., Millet, G. Y., ve Samozino, P. (2020). Optimal load for a torque-velocity relationship test during cycling. Eur J Appl Physiol, 120(11), 2455-2466. DOI: 10.1007/s00421-020-04454-x
  • 25. Laurent, C. M., Meyers, M. C., Robinson, C. A., ve Green, J. M. (2007). Cross-validation of the 20- versus 30-s Wingate anaerobic test. Eur J Appl Physiol, 100(6), 645-51. DOI: 10.1007/s00421-007-0454-3
  • 26. Maud, P. J., ve Shultz, B. B. (1986) Gender comparisons in anaerobic power and anaerobic capacity tests. Br J Sports Med, 20(2):5 1-4. doi: 10.1136/bjsm.20.2.51
  • 27. Medbø, J. I., ve Tabata, I. (1993) Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol, 75(4),1654-60. DOI: 10.1152/jappl.1993.75.4.1654
  • 28. Murphy, M. M., Patton, J. F., ve Frederick, F. A. (1986). Comparative anaerobic power of men and women. Aviat Space Environ Med, 57(7), 636-41.
  • 29. Özkaya, Ö (2014). Paradox in currently available Wingate all-out test indices in milliseconds versus traditionally calculated 5 seconds means. Spor Bilimleri Dergisi, 25(2), 104-107.
  • 30. Pazin, N., Bozic, P., Bobana, B., Nedeljkovic, A., ve Jaric, S. (2011). Optimum loading for maximizing muscle power output: the effect of training history. Eur J Appl Physiol,111(9), 2123-2130. DOI: 10.1007/s00421-011-1840-4
  • 31. Perez-Gomez, J., Rodriguez, G. V., Ara, I., Olmedillas, H., Chavarren, J., González-Henriquez, J. J., Dorado, C.., ve Calbet J. A. L. (2008). Role of muscle mass on sprint performance: gender differences. Eur J Appl Physiol, 102(6), 685-694. DOI: 10.1007/s00421-007-0648-8
  • 32. Serresse, O., Lortie, G., Bouchard, C., ve Boulay, M. R. (1988). Estimation of the contribution of the various energy systems during maximal work of short duration. Int J Sports Med, 9(6), 456-60. DOI: 10.1055/s-2007-1025051
  • 33. Silveira-Rodrigues, J. G., Maia-Lima, A., Almeida, P. A. S., França, B. M. S., Campos, B. T., Penna, E., ve Prado, L. S. (2021). Optimal load setting provides higher peak power and fatigue index with a similar mean power during 30-s Wingate anaerobic test in physically active men. Fatigue Biomedicine Health Behavior, 9(4): 175-188. https://doi.org/10.1080/21641846.2021.1989943
  • 34. Smith, J. C., ve Hill, D. W. (1991). Contribution of energy systems during a Wingate power test. Br J Sports Med, 25(4), 196-199. doi: 10.1136/bjsm.25.4.196
  • 35. Stickley, C. D., Hetzler, R. K., ve Kimura, I. F. (2008) Prediction of anaerobic power values from an abbreviated WAnT protocol. J Strength Cond Res, 22(3), 958-65. DOI: 10.1519/JSC.0b013e31816a906e
  • 36. Üçok, K., Gökbel, H., ve Okudan, N. (2005) The Load Of The Wingate Test: According To The Body Weight Or Lean Body Mass? Eur J Gen Med, 2(1), 10-13. https://doi.org/10.29333/ejgm/82259
  • 37. Üçok, K., Mollaoğlu, H., Demirel, R., ve Akgün, L. (2006). Wingate testinde vücut ağırlığına ve yağsız vücut ağırlığına göre belirlenen yüklerle elde edilen güç çıktılarının karşılaştırılması [Comparison of power outputs of wingate tests applied with loads determined from body weight and lean body mass]. Kocatepe Tıp Dergisi, 7, 31-34. https://dergipark.org.tr/tr/pub/kocatepetip/issue/17421/182437
  • 38. Vandewalle, H., Pérès, G., ve Monod, H. (1987) Standard anaerobic exercise tests. Sports Med, 4(4):268-89. DOI: 10.2165/00007256-198704040-00004
  • 39. Vargas, NT., Robergs, R. A., ve Klopp, D. M. (2015). Optimal loads for a 30-s maximal power cycle ergometer test using a stationary start. Eur J Appl Physiol, 115(5), 1087-1094. DOI: 10.1007/s00421-014-3090-8
  • 40. Weber, C. L., Chia, M., ve Inbar, O. (2006). Gender differences in anaerobic power of the arms and legs--a scaling issue. Med Sci Sports Exerc, 38(1), 129-37. DOI: 10.1249/01.mss.0000179902.31527.2c
  • 41. Whaley, M. H., Brubaker, P. H., Otto, R. M., ve Armstrong, L. E. (2006). ACSM's guidelines for exercise testing and prescription: Lippincott Williams & Wilkins.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Sports Medicine
Journal Section Articles
Authors

Birgül Arslan 0000-0002-4331-6123

Ebru Doğan 0000-0003-3330-9728

Furkan Öztürk 0000-0001-9621-9063

Zübeyde Aslankeser 0000-0003-1850-7048

Şükrü Serdar Balcı 0000-0002-5735-3005

Publication Date January 10, 2023
Submission Date November 7, 2022
Published in Issue Year 2022 Volume: 33 Issue: 4

Cite

APA Arslan, B., Doğan, E., Öztürk, F., Aslankeser, Z., et al. (2023). Wingate testinde anaerobik güç çıktıları: Cinsiyetin, yükün ve sürenin etkisi. Spor Bilimleri Dergisi, 33(4), 227-239. https://doi.org/10.17644/sbd.1200575

26830


HACETTEPE JOURNAL OF SPORT SCIENCES


Copyright © Hacettepe University Faculty of Sport Sciences